编辑:sx_jixia
2016-09-04
同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2017中考数学备考专项练习,希望可以帮助到大家!
一、选择题
1. 在Rt△ABC中,∠C=90°,sinA=1/2 ,则tanB的值为( )
A. 1B.3 C.1/2 D.2
考点:锐角三角函数.
分析:根据题意作出直角△ABC,然后根据sinA= ,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.
解答:∵sinA= ,∴设BC=5x,AB=13x,则AC= =12x,
故tan∠B= = .故选D.
点评: 本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.
2. 如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( )
A.1 B. 1/2C. 3/5D.2/3
考点: 锐角三角函数的定义;三角形的面积;勾股定理
分析: 作AC⊥OB于点C,利用勾股定理求得AC和AB的长,根据正弦的定义即可求解.
解答: 解:作AC⊥OB于点C.
则AC= ,
AB= = =2 ,
则sin∠AOB= = = .
故选D.
点评: 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
3.在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是( )
A. 45° B. 60° C. 75° D. 105°
考点: 特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理
分析: 根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
解答: 解:由题意,得 cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.
故选:C.
点评: 此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.
4.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )
A.1/2 B.3/5 C. 2D.1/5
考点: 锐角三角函数的定义;勾股定理.
分析: 首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.
解答: 解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB= .
∴cosA= ,
故选:D.
点评: 本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.
5.如图1,在边长为1的小正方形组成的网格中, 的三个顶点均在格点上,则 ( ).
(A) (B) (C) (D)
【考点】正切的定义.
【分析】 .
【答案】 D
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为 ,则t的值是【 】
A.1 B.1.5 C.2 D.3
【答案】C.
【解析】
7.在Rt△ACB中,∠C=90°,AB=10,sinA= ,cosA= ,tanA= ,则BC的长为( )
A. 6 B. 7.5 C. 8 D. 12.5
考点: 解直角三角形
分析: 根据三角函数的定义来解决,由sinA= = ,得到BC= = .
解答: 解:∵∠C=90°AB=10,
∴sinA= ,
∴BC=AB× =10× =6.
故选A.
点评: 本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA= ,cosA= ,tanA= .
8.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )
A. 3 B. 4 C. 5 D. 6
(第1题图)
考点: 含30度角的直角三角形;等腰三角形的性质
分析: 过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.
解答: 解:过P作PD⊥OB,交OB于点D,
在Rt△OPD中,cos60°= = ,OP=12,
∴OD=6,
∵PM=PN,PD⊥MN,MN=2,
∴MD=ND= MN=1,
∴OM=OD﹣MD=6﹣1=5.
故选C.
点评: 此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.
9.(2014•四川自贡,第10题4分)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
A.1 B. 1/2C. 2D.3
考点: 圆周角定理;勾股定理;锐角三角函数的定义
专题: 压轴题.
分析: 首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.
解答: 解:过点A作AD⊥OB于点D,
∵在Rt△AOD中,∠AOB=45°,
∴OD=AD=OA•cos45°= ×1= ,
∴BD=OB﹣OD=1﹣ ,
∴AB= = ,
∵AC是⊙O的直径,
∴∠ABC=90°,AC=2,
∴sinC= .
故选B.
点评: 此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
10.(2014•浙江湖州,第6题3分)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA= ,则BC的长是( )
A.2 B. 8 C. 2 D. 4
分析:根据锐角三角函数定义得出tanA= ,代入求出即可.
解:∵tanA= = ,AC=4,∴BC=2,故选A.
点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA= ,cosA= ,tanA= .
11.(2014•广西来宾,第17题3分)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为 4 .
考点: 解直角三角形.
分析: 根据cosB= 及特殊角的三角函数值解题.
解答: 解:∵cosB= ,即cos30°= ,
∴AB= = =4 .
故答案为:4 .
点评: 本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.
12.(2014年贵州安顺,第9题3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于( )
A.30 A B.45 C.60 D.15
考点: 锐角三角函数的定义..
分析: tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.
解答: 解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,
∵EF⊥AC,
∴EF∥BC,
∴
∵AE:EB=4:1,
∴ =5,
∴ = ,
设AB=2x,则BC=x,AC= x.
∴在Rt△CFB中有CF= x,BC=x.
则tan∠CFB= = .
故选C.
点评: 本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.
13.(2014年广东汕尾,第7题4分)在Rt△ABC中,∠C=90°,若sinA= ,则cosB的值是( )
A. 1B.3 C. 2D.-1
分析:根据互余两角的三角函数关系进行解答.
解:∵∠C=90°,∴∠A+∠B=90°,∴cosB=sinA,∵sinA= ,∴cosB= .故选B.
点评:本题考查了互余两角的三角函数关系,熟记关系式是解题的关键.
14.(2014•毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD= ,BC=4,则AC的长为( )
A. 1 B.4
C. 3 D.2
考点: 圆周角定理;解直角三角形
分析: 由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD= ,BC=4,即可求得答案.
解答: 解:∵AB为直径,
∴∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠BCD+∠B=90°,
∴∠B=∠ACD,
∵cos∠ACD= ,
∴cos∠B= ,
∴tan∠B= ,
∵BC=4,
∴tan∠B= = = ,
∴AC= .
故选D.
点评: 此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.
15.(2014年天津市,第2 题3分)cos60°的值等于( )
A. 1/2B. 1C.3 D.5
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。