您当前所在位置:

六年级数学比的意义教学设计

2012-11-28

六年级数学比的意义教学设计

教学内容:九年义务教育五年制小学(人教版)教科书第61—62页及练习十七的第1---4题。

教学目标:

1.通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分名称,理解比和分数、除法之间的关系。

2.通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辨证唯物主义观点。

教学重点:掌握比的意义

教学难点:把两种量组成比,以及在此基础上进行求比值。

教学过程:

一、引探准备

口答:⒈求一个数是另一个数的几倍或几分之几,怎样计算?

⒉分数和除法有什么联系和区别?

二、引导过程

㈠引导探索,使学生由比较两个同类量之间的倍数关系,引出用比表示的方法。

谈话:同学们,有谁知道,今年的雅典奥运会上,中国代表团共获得多少枚金牌?中华人民共和国的国歌在雅典奥运会上多少次庄严奏起,中华人民共和国的国旗多少次在雅典上空率先升起。“五星红旗啊,我们为你自豪”。

同学们,你知道国旗的制作标准吗?下面我们就来计算一下。

投影:这面国旗,长是3分米,宽是2分米。

⒈引导再学。出示初学思考题:

长是宽的几倍,还可以把长和宽的关系说成什么?

宽是长的几分之几,还可以把宽和长的关系说成什么?

⒉讨论回答思考题

师:长是宽的几倍,还可以把长和宽的关系说成什么?

生:长是宽的3/2倍,我们还可以把长和宽的关系说成-----长和宽的比是3比2。

板书   3÷2=3/2  或 3比2

师:宽是长的几分之几,还可以把宽和长的关系说成什么?

生:宽是长的2/3,我们还可以宽和长的关系说成-----宽和长的比是2比3。

板书  2÷3=2/3  或  2比3

师:由上可知,我们还可以用比来表示长与宽之间的倍数关系。

㈡再次探索用比表示两个不同类量之间的除法关系。

投影:一辆汽车,2小时行驶了100千米。

出示初学思考题,引导再学。

①  题目中有哪几个量?可以求出什么问题?怎样求?

②  这两个量间的关系用比怎样表示?

讨论思考题:

师:路程和时间的关系用比来表示怎么说?

生:汽车所行路程和时间的比是100比2。

板书   100÷2=50   或   路程和时间的比是100比2

师:那么汽车所行时间和路程的关系是什么?能用比表示吗?

引导学生弄清谁与谁比,比的结果、意义不同。

㈢引导归纳比的意义,理解掌握比和分数、除法的关系

学生先阅读课本第62页的内容,再学思考题。

思考题:①比是表示几个量之间的什么关系?什么叫做比?

②比的符号是什么?比的每个部分的名称是什么?[

③比和除法有怎样的联系和区别?比和分数呢?

⑴回答思考题①,师即时板书。

生:比是表示两个量之间的相除关系,因此两个数相除又叫做两个数的比。