您当前所在位置:

六年级数学上册第四单元圆教案

2012-10-17

【编者按】为了丰富同学们的学习生活,威廉希尔app 小学频道搜集整理了六年级数学上册第四单元圆教案,供大家参考,希望对大家有所帮助!

六年级数学上册第四单元圆教案

单元目标:

1、认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2、学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

3、独立自学,使学生初步认识弧、圆心角和扇形。

4、使学生认识思对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

5、通过介绍圆周率的史料,使学生受到爱国主义教育。

单元重点:

1、 认识圆和轴对称图形;

2、 掌握圆的周长和面积的计算公式。

单元难点:

理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

1. 认识圆

(1)圆的认识

教学目标:

1、学生认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。

3、培养学生观察、分析、综合、概括及动手操作能力。

教学重点:

圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

教学难点:画圆的方法,认识圆的特征。

教学过程:

一、自学

1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形

2、 示圆片图形:(1)圆是用什么线围成的?(曲线图形)

3、 举例:生活中有哪些圆形的物体?

二、议学

(一)认识圆的特征。

1、学生自己在准备好的纸上画一个圆,并动手剪下。

2、动手折一折。

(1)折过2次后,你发现了什么?

(两折痕的交点叫做圆心,圆心一般用字母O表示)

(2)再折出另外两条折痕,看看圆心是否相同。

3、认识直径和半径。

(1)将折痕用铅笔画出来,比一比是否相等?

(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。

4、讨论:

(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

在同一个圆里,有无数条半径,且所有的半径都相等。

5、直径与半径的关系。

(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

得出结论:在同一个圆里,

6、巩固练习:课本58“做一做”的第1-4题。

(二)画圆

1、介绍圆规的各部分名称及使用方法。

2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

三、悟学

(一)巩固练习

1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。

2、判断,并说为什么。

(1)半径的长短决定圆的大小。 ( )

(2)圆心决定圆的位置。 ( )

(3)直径是半径的2倍。 ( )

(4)圆的半径都相等。 ( )

3、思考题:在操场如何画半径是5米的大圆?

(二)课堂总结:经过今天的学习,你知道了什么?还有什么疑问?

(三)作业:书P60第1-4题。

(2)轴对称图形

教学目标:

1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。

2、学生认识到圆是轴对称图形,且对称轴有无数条。

3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识。

教学重点:圆的对称轴。

教学难点:画对称轴的方法。

教学过程:

一、自学:

1、举例说出轴对称的物体。如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

2、观察、概括。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、议学:

1、你能分别画出下面两个圆的对称轴吗?你能画出几条?

2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?

3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、悟学:

1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

2、小结:对称轴两侧相对点到对称轴的距离相等。

3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。

4、下面的图形是轴对称图形吗?它们各有几条对称轴?

长方形 等边三角形 等腰三角形 正方形 圆 环形

四、总结:

今天我们学习了哪些知识?

五、布置作业:

练习十四第5—9题。

教学追记:

本堂课是对圆的初步认识,概念较多,也能会较乏味。为了避免学生学得枯燥、没兴趣,我采用了课件与动手操作相结合的方式进行教学,充分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。但在教学“画圆”时,我的讲授部分似乎就多了一些,如能让学生自己来讲述、演示画圆的步骤,有何不足在相互补充的话,这样的教学似乎会更好一些。

(3)圆的周长(一)

教学目标:

1、学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能

正确计算圆周长。

2、培养学生的观察、比较、概括和动手操作的能力。

3、对学生进行爱国主义教育。

教学重点:

圆的周长和圆周率的意义,圆周长公式的推导过程。

教学难点:

圆周长公式的推导过程。

教学过程:

一、自学:认识圆的周长

1、出示一个正方形。

这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系? C=4a

2、什么是圆的周长?

让学生上前比划,圆的周长在那?那一部分是圆的周长?

得出定义:围成圆的曲线的长叫做圆的周长。

二、议学:

1、圆周长的公式推导

(1)你可以用什么办法知道一个圆的周长是多少?

(2)学生各抒己见,分别讨论说出自己的方法:

A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

B、把圆放在直尺上滚动一周,直接量出圆的周长。

C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

2、动手实践。

(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

(2)引生看表,问你们看周长与直径的比值有什么关系?

(3)你有办法验证圆的周长总是直径的3倍多一点吗?

(4)阅读课本P63,介绍圆周率,及介绍祖冲之。

3、解决新问题。新-课-标-第-一-网

(1)教学例1 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?

第一个问题: 已知 d = 20米 求:C = ?

根据 C =πd 20×3.14=62.8(m)

第二个问题: 已知: 小自行车d = 50cm 先求小自行车C = ? c=πd 50cm=0.5m 0.5×3.14=1.57(m)

再求绕花坛一周车轮大约转动多少周?

62.8 ÷1.57=40(周)

答:它的周长是62.8米。绕花坛一周车轮大约转动40周。

三、巩固练习。

1、求下列各题的周长。书本65页练习十五的第1题

2、判断正误。

(1)圆的周长是直径的3.14倍。

(2)在同圆或等圆中,圆的周长是半径的6.28倍。

(3)C =2πr =πd

(4)半圆的周长是圆周长的一半。

四、作业。 P64 做一做 ,练习十五的第5、8题

(4)圆的周长(二)

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:求圆的直径和半径。

教学难点:灵活运用公式求圆的直径和半径。

教学过程:

一、自学:

1、口答。 4π 2π 5π 10π 8π

2、求出下面各圆的周长。

二、议学:

1、提出研究的问题。

(1)你知道Π表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么? C=πd C=2πr

(3)根据上两个公式,你能知道:

直径=周长÷圆周率 半径=周长÷(圆周率×2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77m 求:d=?

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 R=c÷(2Π) 求:r=?

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

⑴ 3.14×8

⑵ 3.14×8×2

⑶ 3.14×8÷2+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)

45分钟走了多少厘米? 125.6× =94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

一、 作业。P65-66 第3、6、7、9题

(5)圆的面积(一)

教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

⒊渗透转化的数学思想。

教学重点:圆面积的含义。圆面积的推导过程。

教学难点:圆面积的推导过程。

教学过程:

一、自学:

1、已知r,周长的一半怎样求?

2、用手中的三角板拼三角形,长方形、正方形、平行四边等,并说出这些图形的面积计算公式。

s=ab s=a2 s= ah s= ah s= (a+b)h

二、议学:

1、什么是圆的面积?(出示纸片圆让生摸一摸)

圆所占平面大小叫做圆的面积。

2、推导圆的面积公式。

(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

若分的分数越多,这个图形越接近长方形。

(1)找:找出拼出的图形与圆的周长和半径有什么关系?

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽

所以: 圆的面积 = 圆的周长的一半×圆的半径

S = πr × r

S圆 = πr×r = πr2

3、你还能用其他方法推算出圆的面积公式吗?

(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。

因为:三角形面积= ×底×高

圆面积= ×

= × •r×r

=πr2

(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,

因为:平行四边形面积=底×高

圆面积 = ×r÷

= ×r×8

=πr2

还可以取3份、4份等,同学们可以一一推算。

三、运用知识解决实际问题。

1、例1 一个圆的直径是20m,它的面积是多少平方米?

已知:d=20厘米 求:s=?

2、根据下面所给的条件,求圆的面积。

r=5cm d =0.8dm

3、解答下列各题。

(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

四、作业。

课本P70第1、5题。