小升初数学典型应用题解析

编辑:sx_houhong

2014-06-04

威廉希尔app 为大家带来小升初数学典型应用题,希望可以帮到您!

1. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元。小明带了多少元钱?

解: 还原问题的思考方法来解答。买圆珠笔后余下2.8+0.8=3.6元, 买钢笔后余下(3.6-0.5)×2=6.2元, 小明带了(6.2+0.5)×2=13.4元

2. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄。当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?

解:儿子20年后是6+20=26岁,父亲今年26+10=36岁。 父亲比儿子大36-6=30岁。

当父亲的年龄是儿子年龄的2倍时,儿子的年龄就和年龄差相同,那么到那时儿子30岁。

所以,是在30-6+2007=2031年时。

3. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?

解:“恰好在中间”,我的理解是在蓝甲虫和黄甲虫的中点上。

假设一只甲虫A行在红甲虫的前面,并且让红甲虫一直保持在蓝甲虫和A甲虫的中点上。那么A甲虫的速度每分钟行13×2-11=15厘米。当A甲虫和黄甲虫相遇时,就满足条件了。

所以A甲虫出发时,与黄甲虫相距12×100-15×(30-20)=1050厘米。

需要1050÷(15+15)=35分钟相遇。

即红甲虫在9:05时恰好居于蓝甲虫和黄甲虫的中点上。

4. 一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到。这支解放军部队的行程是多少千米?

解:车速提高1/9,所用的时间就是预定时间的1÷(1+1/9)=9/10, 所以预定时间是20÷(1-9/10)=200分钟。

速度提高1/3,如果行完全程,所用时间就是预定时间的1÷(1+1/3)=3/4, 即提前200×(1-3/4)=50分钟。

但却提前了30分钟,说明有30÷50=3/5的路程提高了速度。

所以,全程是72÷(1-3/5)=180千米。

这题我有一巧妙的,小学生容易懂的算术方法。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。