编辑:sx_yangk
2015-09-10
构造性数学是现代数学研究的一个重要领域。它的根本特征就是对可构造性的强调。 以下就是由小编为您提供的构造性数学及其哲学意义。
所谓可构造性是指能具体地给出某一对象或者能给出某一对象的计算方法。即当我们把能证实“存在一个X满足性质A”的证明称为构造性的,是指能从这个证明中具体地给出满足性质A的一个x;或者能从此证明中得到一个机械的方法,使其经有限步骤后即能确定满足性质A的这个x来。反之,经典数学(非构造性数学)中的纯存在性证明被称之为非构造的。非构造性证明主要是通过使用反证法来实现的。人们一般把这种强调可构造性的数学称为构造性数学。
构造性数学最早起源于一种构造性哲学思想,这种思想可以追溯到康德那里。康德认为,数学的最终真理性在于数学概念可以通过人的智慧构造出来。他说:“数学必须根据纯粹直观,在纯直观里它才能够具体地,然而却是先天地把它的一切概念提供出来,或者像人们所说的那样,把这些概念构造出来”。又说“数学知识是从概念的构造得出来的理性知识。构造一个概念,意即先天地提供出来与概念相对应的直观。”后来,19世纪德国的克罗内克进一步指出:“上帝创造了整数,其余都是人做的工作。”主张自然数与数学归纳法是数学最根本的和直观上最可信的出发点,其它一切数学对象都必须能在有限步骤内从自然数中构造出来,否则就不能作为数学对象。由此克罗内克把许多数学成果划到不合法的行列里,如无限集合、纯存在性证明等。但由于他批判的多建设的少,故其思想在当时并未产生很大影响。另外,彭加勒、勒贝格等大数学家也都是倡导构造性数学研究的有名人物。但是,所有这些人提倡的大都只是一种数学哲学的思想,他们实际的数学工作并未严格地遵循自己的哲学思想。因此,现代意义的构造性数学应以布劳威尔的直觉主义数学为开端,迄今,在构造性数学的研究领域里,由于宗旨、观点和方法的不同,已经形成了一些不同的学派。最着名的除了布劳威尔的直觉主义数学以外,还有希尔伯特的元数学、毕晓普等人的构造性数学以及马尔科夫的算法论等。布劳威尔的直觉主义数学和希尔伯特的元数学,我国数学哲学界普遍比较熟悉,故本文不再表述。这里我们仅就后来发展起来的毕晓普、马尔科夫的构造性数学作些简述。
以毕晓普、迈希尔等人为代表的构造性数学是一个与早先直觉主义数学齐名但又不同于它的新的构造性数学。他们的构造性数学研究是在数学领域中,用普通逻辑于可编码的对象和递归函数。他们所关心的不是数学的奠基问题,而是要用构造性方法来研究数学。他们把构造性数学看成古典数学的一个分支,在这个分支中所讨论的对象都要求是可计算的。以毕晓普的工作为例,他认为只证明一个数学对象在逻辑上必然存在是不够的,还必须拟定一种有限而机械的办法把这个对象构造出来。他不用非直观的概念来重建数学,而是从标准的算术规则和有理数出发,通过避开“理想”观念并不断地检验从直观生成的对象和定理,逐步地进行构造,以求得数学的可信性。他与布劳威尔不同,他不去全盘地否定康托的集合论,而是把它加以改造,使之具有构造的合理性。如确定一个集合,原来康托的朴素定义只要求给出一个判别集合中元素的规则即可,而毕晓普认为还应要求拟定出一个办法来真正构造集合的一个元素并证明集合中两个元素是不同的。这样,则可使康托集合论中的一条最有争议的公理——选择公理成为完全可以接受的了。他们把经典数学的基本概念算法化,并从而考虑哪些定理在构造意义下仍然成立,哪些定理不能成立以及如何改造等,由此发展出相当大的一部分有价值的数学。1967年毕晓普的《构造性分析》的出版,标志着这一新的构造性数学的建立,而随后《构造性泛函分析》的问世,则表明了这一领域的新进展。
标签:科技哲学论文
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。