您当前所在位置:

人口问题论文:Logisitic人口模型在民族地区的适用性检验解析

2013-08-26

威廉希尔app 为大家整理的人口问题论文:Logisitic人口模型在民族地区的适用性检验解析,供大家阅读参考。

一、研究背景

我国是人口最多的发展中国家,经济的发展离不开人口发展,人口发展又会反作用于经济发展,所以,在我国,要想搞好经济发展,首先就要解决人口问题。

由于我国的地理原因和历史原因,少数民族地区的经济和人口发展属于滞后状态,但是国民经济的发展势必会带动少数民族地区的经济发展,民族地区的滞后势必也会成为总是经济发展的弊端,所以少数民族地区的发展成为了大家关注的焦点,希望能通过少数民族地区的发展来提高总体发展的均衡性。

1789年,马尔萨斯就在《人口理论》一书中提出了人口指数增长模型,在当时受到了很大的关注,但同时人们也提出了很多争议,因为指数增长型明显地存在了一些弊端,在当时间趋向无穷的时候,人口总数也会趋向无穷,这与现实情况是不相符合的,但由于当时人口基数小,所以马尔萨斯模型还是活跃了很长一段时间,直至西方经济的迅速发展,人口数量也得到了迅速的发展,此时,马尔萨斯模型已与当时的人口发展产生了很大的误差,人们便愈加重视马尔萨斯人口模型的缺陷,于是Logistic人口模型即阻滞增长模型便应运而生了。

下面文章就贵州省的三个民族自治县用Logistic人口模型做预测,与真实值比较并对结果做分析。

二、模型理论知识

Logisitic人口模型是改进的马尔萨斯人口模型,所以在条件假设方面logistic人口模型还是传承了马尔萨斯人口模型的特点,它们的差异就是,在马尔萨斯人口模型中认为单位时间内人口的增长量与人口总数成正比,比率为常数r;而在logistic人口模型中引入常数Nm,用来表示自然环境条件所能容许的最大人口数,并假设增长率等于r1-,即净增长率随着N(t)的增加而减小,当N(t)→Nm时,净增长率趋于零,按此假定的情况下建立人口预测模型。如果假设在预测期内不会发生大的人口迁移、自然灾害等特殊情况。

可得Logisitic模型:

如果考虑自然灾害的突发、城镇化进程与生态环境保护政策实施引发的人口迁移、旅游业的发展以及国家的生育政策颁布的影响因素,以上Logisitic连续状态模型就遭到破坏。

三、模型建立和求解

文章以贵州省3个民族自治县作为研究对象,以人口总量最为研究的指标,需要对贵州省这三个自治县做出假设:一是贵州省这3个民族自治县自然条件的情况符合logistic人口模型的基本条件要求;二是在我们所研究的时间范围内自然环境所能容许的最大人口数是一个常量。

根据上式logistic人口模型方程,我们通过求解不难可以得到:

其中Nm表示自然环境条件所能容许的最大人口数,N0表示与初始时刻t0所对应的初始人口,N(t)表示t时刻所对应的人口。我们需要知道三组数据才可以求解此方程,并用其总之后的整理预测。