2011公务员联考行测指导:剩余定理

编辑:liuyh

2011-04-22

一、中国剩余定理的由来

我国古代数学名著《孙子算经》中,记载这样一个问题: “今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何。”用现在的话来说就是:“有一批物品,3个3个地数余2个,5个5个地数余3个,7个7个地数余2个,问这批物品最少有多少个?” 这个问题的解题思路,被称为“孙子问题”、“鬼谷算”、“隔墙算”、“韩信点兵”等等。

二、“中国剩余定理”算理及其应用

明朝数学家程大位把这一解法编成四句歌诀:

三人同行七十(70)稀,五树梅花廿一(21)枝,

七子团圆正月半(15),除百零五(105)便得知。

歌诀中每一句话都是一步解法:第一句指除以3的余数用70去乘;第二句指除以5的余数用21去乘;第三句指除以7的余数用15去乘;第四句指上面乘得的三个积相加的和如超过105,就减去105的倍数,就得到答案了。即:70×2+21×3+15×2-105×2=23

为什么这样解呢?因为70是5和7的公倍数,且除以3余1。21是3和7的公倍数,且除以5余1。15是3和5的公倍数,且除以7余1。(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。

三、“中国剩余定理”的应用

主要是是针对那些我们学的口诀“公倍数做周期:余同取余,和同加和,差同减差”以外的余数问题的题目。

例1、一个数被3除余1,被4除余2,被5除余4,这个数最小是几?

A、81  B、34  C、128  D、103

【答案】B 解析:本题属于余数问题。题中3、4、5三个数两两互质。则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

为了使20被3除余1,用20×2=40;

使15被4除余1,用15×3=45;

使12被5除余1,用12×3=36。

然后,40×1+45×2+36×4=274。

因为,274>60,所以,274-60×4=34,就是所求的数。所以选择B选项。

标签:数量关系

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。