编辑:sx_liujy
2015-05-20
概率在高考中一般出现在选择题,知识点不难,注意各种情况都要考虑到。威廉希尔app 高中频道整理了高考数学第一轮总复习教案:概率,希望能帮助教师授课!
一、填空题
1.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增加,下面4种说法:①f(n)与某个常数相等;②f(n)与某个常数的差逐渐减小;③f(n)与某个常数差的绝对值逐渐减小;④f(n)在某个常数附近摆动并趋于稳定,其中正确的是________.
解析 随着n的增大,频率f(n)会在概率附近摆动并趋于稳定,这也是频率与概率的关系.
答案 ④
2.(2014•南京一中月考)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.
解析 3个红球记为A1,A2,A3,2个黄球记为B1,B2则基本事件为A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2共10种.所取2个球颜色不同的事件为A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.
∴所求概率为610=35.
答案 35
3.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为________.
解析 由题意知该同学的身高超过175 cm的概率为1-0.2-0.5=0.3.
答案 0.3
4.(2014•郑州模拟)抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=12,P(B)=16,则出现奇数点或2点的概率为________.
解析 因为事件A与事件B是互斥事件,所以P(A∪B)=P(A)+P(B)=12+16=23.
答案 23
5.从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)=________(结果用最简分数表示).
解析 ∵P(A)=152,P(B)=1352,
∴P(A∪B)=P(A)+P(B)=152+1352=1452=726.
答案 726
6.(2014•沈阳模拟)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是________.
解析 从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1-110=910.
答案 910
7.(2013•陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是________.
解析 由频率分布直方图可知,一等品的频率为0.06×5=0.3,三等品的频率为0.02×5+0.03×5=0.25,所以二等品的频率为1-(0.3+0.25)=0.45.用频率估计概率可得其为二等品的概率为0.45.
答案 0.45
8.(2014•无锡模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.
解析 记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C.则A,B,C彼此互斥,由题意可得P(B)=0.03,P(C)=0.01,所以P(A)=1-P(B+C)=1-P(B)-P(C)=1-0.03-0.01=0.96.
答案 0.96
二、解答题
9.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,黑球或黄球的概率是512,绿球或黄球的概率也是512,求从中任取一球,得到黑球、黄球和绿球的概率分别是多少?
解 从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A、B、C、D,则事件A、B、C、D彼此互斥,所以有
P(B+C)=P(B)+P(C)=512,
P(D+C)=P(D)+P(C)=512,P(B+C+D)=P(B)+P(C)+P(D)=1-P(A)=1-13=23,解得P(B)=14,P(C)=16,P(D)=14.
故从中任取一球,得到黑球、黄球和绿球的概率分别是14,16,14.
10.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]
频数 8 20 42 22 8
B配方的频数分布表
指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]
频数 4 12 42 32 10
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=-2,t<94,2,94≤t<102,4,t≥102,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.
解 (1)由试验结果知,用A配方生产的产品中优质品的频率为22+8100=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.
由试验结果知,用B配方生产的产品中优质品的频率为32+10100=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.
(2)由条件知,用B配方生产的一件产品的利润大于0,当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96.所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为1100×[4×(-2)+54×2+42×4]=2.68(元).
能力提升题组
(建议用时:25分钟)
标签:高三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。