编辑:sx_yanxf
2016-09-18
提前做好教学规划,可以帮助教师理清新课时的教学思路,进而提高课堂效率。以下是威廉希尔app 为老师提供的高二数学几何概型教案设计,希望在老师的教学中能够有所帮助。
一、教学内容解析
1.内容:几何概型
2.内容解析:
本节课是人教A版教材数学必修3第三章第三节的内容。“几何概型”这一章节内容是在安排“古典概型”之后的第二类概率模型,是对古典概型的内容进一步拓展,是等可能事件的概念从有限向无限的延伸。此节内容也是新课本中增加的,这是与以往教材安排上的最大的不同之处。这充分体现了数学与实际生活的紧密关系,来源生活,而又高于生活。同时也暗示了它在概率论中的重要作用,在高考中的题型的转变。本章主要学概率问题的基本概念、基本原理、基本方法,因此在教学中要求应适当,难度要控制,同时要接近生活,基本应以贴近生活的例题与习题为主。
二、教学目标设置
知识与技能目标:
(1)通过本部分内容的学习,理解几何概型的意义、特点;掌握几何概型的概率公式:
,会用公式计算几何概型。
(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;
(3)通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
过程与方法目标:
(1)发现法教学,通过师生共同对“问题链”的探究,运用观察、类比、思考、探究、概括、归纳的方法和动手尝试相结合体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。
(2)通过试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
情感态度与价值观目标:
本节课的主要特点是贴近生活,体会概率在生活中的重要作用,同时随机试验多,学习时养成勤学严谨的思维习惯。
三、学生学情分析
通过前面的学习,学生在已经掌握一般性的随机事件即概率的统计定义的基础上,又学习了古典概型。在古典概型向几何概型的过渡时,以及实际背景如何转化为“测度”时,会有一些困难。但只要引导得当,理解几何概型,完成教学目标,是切实可行的。基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围。在引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣。
四、教学策略分析
教学重点:
(1)初步体会几何概型的意义,几何概型的概念和公式的应用,注意理解几何概型与古典概型的区别与联系。
(2)在几何概型中把试验的基本事件组和随机事件与某一特定的几何区域及其子区域对应并计算相关的概率。
教学难点
(1)在几何概型中把试验的基本事件组和随机事件与某一特定的几何区域及其子区域对应,并且从中理解如何利用几何概型的知识把实际问题转化为各种几何概率问题,进而熟练应用几何概型的概率公式计算相关事件发生的概率。
(2)含有两个随机现象的问题的解决方法。
教学方法和教学手段的选择
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。结合本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、分析问题、解决问题等教学过程,观察对比、概括归纳几何概型的概念及其概率公式,再通过具体实际问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
教学过程的设计
为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:
(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对几何概型认识,使得学生对概念的认识不断深入。
(2)在应用概念阶段, 通过对事实过程的分析,帮助学生掌握用几何概型的概率公式计算概率。
(3)考虑到我校的学生数学基础良好,思维活跃,具备一定的分析问题和自主探究能力。因此在教学设计中强调学生主体地位,教师的主导作用,强调数学思想方法的渗透与运用。使学生在教师创设的问题情境中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神,希望加深学生对知识本质的理解。
五、教学过程(整个教学过程是“以问题为载体,以学生活动为主线”进行的)
师生活动
设计意图
(一)知识链接,复习提问
老师:前面,我们共同研究了古典概型,请大家回忆:古典概型有哪些特点?
学生:1.基本事件的个数为有限个;
2.每一个基本事件发生的可能性都相等。
老师:古典概型的概率计算公式是什么形式?
学生:
。
老师:可见,求古典概型中事件A的概率,实际上就是要数清A所含的基本事件的个数与全部基本事件的个数,它们的比值就是这个事件的概率。接下来,我们共同研究几个问题,看看它们还是不是古典概型。
温故而知新,通过复习旧知加强学生对以往知识的掌握,为后面总结古典概型与几何概型之间的区别与联系做好铺垫。
标签:高二数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。