编辑:sx_gaohm
2015-08-18
复数,是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)。精品小编准备了高二年级数学教案,具体请看以下内容。
教学目标
(1)把握复数加法与减法运算法则,能熟练地进行加、减法运算;
(2)理解并把握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;
(3)能初步运用复平面两点间的距离公式解决有关问题;
(4)通过学习平行四边形法则和三角形法,培养学生的数形结合的数学思想;
(5)通过本节内容的学习,培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).
教学建议
一、知识结构
二、重点、难点分析
本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不轻易接受。
三、教学建议
(1)在复数的加法与减法中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当 时,与实数加法法则一致;②验证实数加法运算律在复数集中仍然成立;③符合向量加法的平行四边形法则.
(2)复数加法的向量运算讲解设 ,画出向量 , 后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量) ,画出向量 后,问与它对应的复数是什么,即求点Z的坐标OR与RZ(证法如教材所示).
(3)向学生介绍复数加法的三角形法则.讲过复数加法可按向量加法的平行四边形法则来进行后,可以指出向量加法还可按三角形法则来进行:如教材中图8-5(2)所示,求 与 的和,可以看作是求 与 的和.这时先画出第一个向量 ,再以 的终点为起点画出第二个向量 ,那么,由第一个向量起点O指向第二个向量终点Z的向量 ,就是这两个向量的和向量.
(4)向学生指出复数加法的三角形法则的好处.向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当 与 在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释轻易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便.
(5)讲解了教材例2后,应强调 (注重:这里 是起点, 是终点)就是同复数 - 对应的向量.点 , 之间的距离 就是向量 的模,也就是复数 - 的模,即 .
例如,起点对应复数-1、终点对应复数 的那个向量(如图),可用 来表示.因而点 与 ( )点间的距离就是复数 的模,它等于 。
教学设计示例
复数的减法及其几何意义
教学目标
1.理解并把握复数减法法则和它的几何意义.
2.渗透转化,数形结合等数学思想和方法,提高分析、解决问题能力.
3.培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).
教学重点和难点
重点:复数减法法则.
难点:对复数减法几何意义理解和应用.
教学过程设计
(一)引入新课
上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义)
(二)复数减法
复数减法是加法逆运算,那么复数减法法则为( i)( i)=( ) ( )i,
1.复数减法法则
(1)规定:复数减法是加法逆运算;
(2)法则:( i)( i)=( ) ( )i( , , , ∈R).
把( i)( i)看成( i) (1)( i)如何推导这个法则.
( i)( i)=( i) (1)( i)=( i) ( i)=( ) ( )i.
推导的想法和依据把减法运算转化为加法运算.
推导:设( i)( i)= i( , ∈R).即复数 i为复数 i减去复数 i的差.由规定,得( i) ( i)= i,依据加法法则,得( ) ( )i= i,依据复数相等定义,得
故( i)( i)=( ) ( )i.这样推导每一步都有合理依据.
我们得到了复数减法法则,两个复数的差仍是复数.是唯一确定的复数.
复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即( i)±( i)=( ± ) ( ± )i.
(三)复数减法几何意义
我们有了做复数减法的依据——复数减法法则,那么复数减法的几何意义是什么?
设z= i( , ∈R),z1= i( , ∈R),对应向量分别为 , 如图
由于复数减法是加法的逆运算,设z=( ) ( )i,所以zz1=z2,z2 z1=z,由复数加法几何意义,以 为一条对角线, 1为一条边画平行四边形,那么这个平行四边形的另一边 2所表示的向量OZ2就与复数zz1的差( ) ( )i对应,如图.
在这个平行四边形中与zz1差对应的向量是只有向量 2吗?
还有 . 因为OZ2 Z1Z,所以向量 ,也与zz1差对应.向量 是以Z1为起点,Z为终点的向量.
能概括一下复数减法几何意义是:两个复数的差zz1与连接这两个向量终点并指向被减数的向量对应.
(四)应用举例
在直角坐标系中标Z1(2,5),连接OZ1,向量 1与多数z1对应,标点Z2(3,2),Z2关于x轴对称点Z2(3,2),向量 2与复数对应,连接,向量与的差对应(如图).
标签:高二数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。