您当前所在位置:首页 > 高中 > 高中数学学习 > 学习方法

高中数学学习方法:函数的综合问题

编辑:sx_wangha

2012-08-20

●知识梳理

函数的综合应用主要体现在以下几方面:

1.函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合.

2.函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合.这是高考主要考查的内容.

3.函数与实际应用问题的综合.

●点击双基

1.已知函数f(x)=lg(2x-b)(b为常数),若x∈[1,+∞)时,f(x)≥0恒成立,则

A.b≤1      B.b<1      C.b≥1      D.b=1

解析:当x∈[1,+∞)时,f(x)≥0,从而2x-b≥1,即b≤2x-1.而x∈[1,+∞)时,2x-1单调增加,

∴b≤2-1=1.

答案:A

2.若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式|f(x+1)-1|<2的解集是___________________.

解析:由|f(x+1)-1|<2得-2

又f(x)是R上的减函数,且f(x)的图象过点A(0,3),B(3,-1),

∴f(3)

∴0

答案:(-1,2)

●典例剖析

【例1】 取第一象限内的点P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差数列,1,y1,y2,2依次成等比数列,则点P1、P2与射线l:y=x(x>0)的关系为

A.点P1、P2都在l的上方     B.点P1、P2都在l上

C.点P1在l的下方,P2在l的上方   D.点P1、P2都在l的下方

剖析:x1= +1= ,x2=1+ = ,y1=1× = ,y2= ,∵y1

∴P1、P2都在l的下方.

答案:D

【例2】 已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于x∈R,都有g(x)=f(x-1),求f(2002)的值.

解:由g(x)=f(x-1),x∈R,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),x∈R.

∴f(x)为周期函数,其周期T=4.

∴f(2002)=f(4×500+2)=f(2)=0.

评述:应灵活掌握和运用函数的奇偶性、周期性等性质.

【例3】 函数f(x)= (m>0),x1、x2∈R,当x1+x2=1时,f(x1)+f(x2)= .

(1)求m的值;

(2)数列{an},已知an=f(0)+f( )+f( )+…+f( )+f(1),求an.

解:(1)由f(x1)+f(x2)= ,得 + = ,

∴4 +4 +2m= [4 +m(4 +4 )+m2].

∵x1+x2=1,∴(2-m)(4 +4 )=(m-2)2.

∴4 +4 =2-m或2-m=0.

∵4 +4 ≥2 =2 =4,

而m>0时2-m<2,∴4 +4 ≠2-m.

∴m=2.

(2)∵an=f(0)+f( )+f( )+…+f( )+f(1),∴an=f(1)+f( )+ f( )+…+f( )+f(0).

∴2an=[f(0)+f(1)]+[f( )+f( )]+…+[f(1)+f(0)]= + +…+ = .

∴an= .

深化拓展

用函数的思想处理方程、不等式、数列等问题是一重要的思想方法.

【例4】 函数f(x)的定义域为R,且对任意x、y∈R,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.

(1)证明f(x)是奇函数;

(2)证明f(x)在R上是减函数;

(3)求f(x)在区间[-3,3]上的最大值和最小值.

(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),∴f(x)+ f(-x)=f(0).又f(0+0)=f(0)+f(0),∴f(0)=0.从而有f(x)+f(-x)=0.

∴f(-x)=-f(x).∴f(x)是奇函数.

(2)证明:任取x1、x2∈R,且x1

∴-f(x2-x1)>0,即f(x1)>f(x2),从而f(x)在R上是减函数.

(3)解:由于f(x)在R上是减函数,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3×(-2)=-6,f(-3)=-f(3)=6.从而最大值是6,最小值是-6.

深化拓展

对于任意实数x、y,定义运算x*y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意实数x,都有x*m=x,试求m的值.

提示:由1*2=3,2*3=4,得

∴b=2+2c,a=-1-6c.

又由x*m=ax+bm+cmx=x对于任意实数x恒成立,

∴ ∴b=0=2+2c.

∴c=-1.∴(-1-6c)+cm=1.

∴-1+6-m=1.∴m=4.

答案:4.

标签:学习方法

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。