您当前所在位置:首页 > 高中 > 高中数学学习 > 高中数学讲解

解析几何中求参数取值范围的方法

编辑:sx_wangha

2012-09-10

与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法:

一、利用曲线方程中变量的范围构造不等式

曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.

例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)

求证:-a2-b2a ≤ x0 ≤ a2-b2a

分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.

解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 •x2+x1 y2+y1

又∵线段AB的垂直平分线方程为

y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )

令y=0得 x0=x1+x22 •a2-b2a2

又∵A,B是椭圆x2a2 + y2b2 = 1 上的点

∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a

∴ -a2-b2a ≤ x0 ≤ a2-b2a

例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.

分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.

解: 依题意有

∴tanθ=2S

∵12 < S <2 ∴1< tanθ<4

又∵0≤θ≤π

∴π4 <θ< p>

例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 ( )

A a<0 B a≤2 C 0≤a≤2 D 0<2< p>

分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.

解: 设Q( y024 ,y0) 由|PQ| ≥a

得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0

∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立

又∵ y02≥0

而 2+ y028 最小值为2 ∴a≤2 选( B )

二、利用判别式构造不等式

在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.

例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是 ( )

A [-12 ,12 ] B [-2,2] C [-1,1] D [-4,4]

分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0

解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)

由 得 k2x2+(4k2-8)x+4k2 = 0

∵直线L与抛物线有公共点

∴△≥0 即k2≤1 解得-1≤k≤1 故选 (C)

例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.

分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.

解:由 得 (k2-2)x2 +2kx+2 = 0

∵直线与双曲线的右支交于不同两点,则

解得 -2<-2< p>

三、利用点与圆锥曲线的位置关系构造不等式

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。