您当前所在位置:首页 > 高中 > 高中数学学习 > 高中数学公式

高中数学数列公式及结论

编辑:sx_wangha

2012-09-11

一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n-1)d      an=ak+(n-k)d     (其中a1为首项、ak为已知的第k项)  当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=

      Sn=

    Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1     an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1     (是关于n的正比例式);

当q≠1时,Sn=

          Sn=

三、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则

3、等比数列{an}中,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an

 bn}、

 、

 仍为等比数列。

 

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。