编辑:sx_gaohm
2015-12-16
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。精品小编准备了高一数学函数模型及其应用专项训练题,具体请看以下内容。
1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场( )
A.不赚不亏 B.赚了80元
C.亏了80元 D.赚了160元
解析:960+960-9601+20%-9601-20%=-80.
答案:C
2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________.
解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值.
答案:9 m2
3.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,则x与y的函数关系式为__________.
解析:溶液的浓度=溶质的质量溶液的质量=x•a%+y•b%x+y=
c%,解得y=a-cc-bx=c-ab-cx.
答案:y=c-ab-cx
4.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新标价在价目卡上,并说明按该价的20%销售.这样仍可获得25%的纯利,求此个体户给这批服装定的新标价y与原标价x之间的函数关系式为________
解析:由题意得20%y-0.75x=0.7x×25%⇒y=7516x.
答案:y=7516x
5.如果本金为a,每期利率为r,按复利计算,本利和为y,则存x期后,y与x之间的函数关系是________.
解析:1期后y=a+ar=a(1+r);
2期后y=a(1+r)+a(1+r)r=a(1+r)2;…归纳可得x期后y=a(1+r)x.
答案:y=a(1+r)x
6.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,n年后这批设备的价值为________万元.
解析:1年后价值为:a-ab%=a(1-b%),2年后价值为:a(1-b%)-a(1-b%)•b%=a(1-b%)2,
∴n年后价值为:a(1-b%)n.
答案:a(1-b%)n
7.某供电公司为了合理分配电力,采用分段计算电费政策,月用电量x(度)与相应电费y(元)之间的函数关系的图象如下图所示.
(1)填空:月用电量为100度时,应交电费______元;
(2)当x≥100时,y与x之间的函数关系式为__________;
(3)月用电量为260度时,应交电费__________元.
解析:由图可知:y与x之间是一次函数关系,用待定系数法可求解析式.
答案:(1)60 (2)y=12x+10 (3)140
标签:高一数学专项练习
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。