编辑:
2013-11-18
20.如图7-15,在正三棱柱ABC—A1B1C1中,各棱长都等于a,D.E分别是AC1.BB1的中点,
(1)求证:DE是异面直线AC1与BB1的公垂线段,并求其长度;
(2)求二面角E—AC1—C的大小;
(3)求点C1到平面AEC的距离.
解 (1)过D在面AC1内作FG∥A1C1分别交AA1.CC1于F.G,则面EFG∥面ABC∥面A1B1C1,
∴△EFG为正三角形,D为FG的中点,ED⊥FG.
连AE, ∵D.E分别为 的中点,
∴ .又∵面EFG⊥BB1,
∴ED⊥BB1,故DE为AC1和BB1的公垂线,计算得DE= a.
(2)∵AC=CC1,D为AC1的中点,∴CD⊥AC1,又由(1)可知,ED⊥AC1,∴∠CDE为二面角E—AC1—C的平面角,计算得∠CDE=90°.或由(1)可得DE⊥平面AC1,∴平面AEC1⊥平面AC1,∴二面角E—AC1—C为90°.
(3)用体积法得点C1到平面ACE的距离为 a.
总结:高一数学上册寒假作业就为大家介绍完了,高考是重要的考试,大家要好好把握。想要了解更多学习内容,请继续关注威廉希尔app 。
阅读本文的还阅读了:
高一数学上册寒假练习题及答案标签:高一数学寒假作业
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。