您当前所在位置:首页 > 高中 > 高一 > 高一生物 > 高一生物知识点

高一必修2生物第一章学习要点:孟德尔的豌豆杂交实验(二)

编辑:sx_gaohm

2016-03-10

对人类来说,生物太重要了,人们的生活处处离不开生物。精品小编准备了高一必修2生物第一章学习要点,希望你喜欢。

1.有关控制奶牛的产奶量和生长速率的基因

奶牛的产奶量和生长速率都属于数量性状,涉及许多基因,以下列举的是影响奶牛主要经济性状的基因。

(1)催乳素基因位于奶牛的23号染色体上。

(2)Weaver基因摇摆症(weaver disease)是一种遗传疾病,主要由位于4号染色体上的weaver基因控制。人们发现患有摇摆症的奶牛或携带weaver基因的奶牛有较高的产奶量,这可能是由于weaver基因具有多效性,或weaver基因与影响产奶量的数量基因紧密连锁。

(3)乳蛋白基因与牛乳中主要包含的6种蛋白质有关。

(4)淀粉酶基因淀粉酶基因与乳脂率之间存在一定的相关性。

(5)生长激素和生长激素受体基因研究表明,生长激素和生长激素受体基因对产奶性状有影响。

2.1900年重新发现孟德尔规律的三位科学家的有关工作

荷兰阿姆斯特丹大学的著名教授德弗里斯(H.de Vires,1848—1935)研究了两种月见草的杂交。发现从杂种种子长出的植株(F1)完全像一个亲本的性状,接着F1自花受粉得到的下一代(F2)中,又重新出现了具有另一个亲本性状的植株,分离比例为3∶1。他又进一步做了详细研究,认为这是一个遗传法则。为了弄清楚以前是否有人做过同样的研究,他查阅了文献。结果从拜莱的著作《植物育种》(1895年)中了解到孟德尔的工作。德弗里斯将自己的研究成果分别用法文和德文撰写成论文。用德文写的《杂种的分离法则》(1900年3月26日发稿)刊登在《德国植物学会杂志》第18卷第83~90页。在这篇论文中德弗里斯写道:“这项重要的研究(孟德尔:《植物杂交实验》)竟极少被人引用,以致在我总结我的主要实验,并从实验中推导出孟德尔论文早已给出的原理之前,竟然不知道有这项研究。”比德文论文晚12 d写成的法文论文《关于杂种的分离定律》刊登在法国的《科学院记事录》上。但在法文论文中,对孟德尔的工作只字未提。德弗里斯推测每一个遗传性状都由一个称为泛子的特殊颗粒所支配,并指出物种的性状可以分成一个个独立的组成成分而用于杂交。他的学术观点对遗传的“突变理论”起了重大作用。

德国土宾根大学研究玉米的教授柯伦斯(C.Correns,1864—1933)在 1900年4月21日读到了德弗里斯的法文论文,看到了与自己研究工作相同的结果。尽管他读到的法文论文中未提到孟德尔,但他曾从老师耐格里处得知孟德尔的工作。于是他在自己的论文标题中特别突出地强调了孟德尔。他的论文《杂种后代表现方式中的孟德尔定律》(1900年4月24日收稿)也发表在《德国植物学会杂志》第18卷第158~168页。柯伦斯的论文对孟德尔遗传规律的再发现也起了十分重要的作用。

与此同时,奥地利维也纳农业大学的一位年轻讲师丘歇马克(E.Tschermak,1871—1962)在研究豌豆杂种后代的性状时,也观察到分离现象。他认为这是一个重大发现,着手撰写讲师就职论文《关于豌豆的人工杂交》。可是,当论文校样出来时,他读到了德弗里斯的德文论文和柯伦斯的论文,于是,他赶忙把论文摘要投寄给《德国植物学会杂志》刊登在该杂志第18卷第232~239页。

三位科学家的论文都刊登在1900年出版的《德国植物学会杂志》第18卷,都证实了孟德尔有关单个性状遗传的法则,从而引起学术界的重视。

3.性状的多基因决定

多基因决定的性状有质量性状和数量性状:表现不连续变异的性状,称为质量性状;表现连续变异的性状,称为数量性状。质量性状在杂种后代的分离群体中,对于各个个体所具有的相对性状的差异,可以明确地分组并求出不同组间的比例,来研究它们的遗传动态。但是在生物界更广泛存在的是数量性状。在一个自然群体或杂交后代群体内,不同个体的性状都表现为连续的变异,很难进行明确地分组,更难求出不同组之间的比例,所以不能用分析质量性状的方法分析数量性状,而要用统计学方法对这些性状进行测量,才能研究它们的遗传动态。我们主要介绍质量性状的遗传。

现以人的身高为例说明多基因遗传的特点。人的身高是由许多数目不详、作用微小的共显性基因所决定的。假设有三对决定身材高矮的基因:AA′、BB′、CC′,频率都是0.5。这三对基因中A、B、C三个基因各使人的身高在平均身高的基础上增加5 cm,A′、B′、C′各使人的身高在平均身高的基础上降低5 cm。假如身高极高的个体(AABBCC)和身高极矮的个体(A′A′B′B′C′C′)婚配,子一代都将具有杂合基因型(AA′BB′CC′),从理论上说都将具有中等身高。然而,由于环境因素的影响,子一代个体间在身高上仍会有一定差异。当然,这种差异完全是环境因素影响的结果。子一代的不同个体间如果进行婚配,子二代的大部分个体仍将具有中等身高,但是变异范围广泛,将会出现一些极高和极矮的个体。这种变异首先受这三对基因分离和自由组合的影响,子一代可产生8种精子或卵细胞,精卵随机结合,子二代可有27种基因组合,然后再将各基因型按高矮不同基因数归组,可以归并成7组:6、0′(无上标的数字表示使身材增高基因的个数,有上标的数字表示使身材变矮的等位基因的个数),5、1′,4、2′,3、3′,2、4′,1、5′,0、6′;它们的频数分布是1、6、15、20、15、6、1;其次环境因素对子二代的身高也有一定作用。

4.基因的多效性

基因的多效性是指一个基因可有多种生物学效应。在人类中,很多单个基因可以使一个个体表现出多种性状。其原理涉及基因的初级效应和次级效应。初级效应是指基因通过转录和翻译过程指导一条多肽链的合成,而次级效应则是由多肽链所构成的蛋白质或酶所参与或控制的各种生理过程。基因的初级效应是单一的,但次级效应则可以是多方面的。一个基因异常所造成的基因产物的缺乏常常会在不同的组织内及个体不同的发育阶段引起一系列的生化代谢或组织结构的异常,即使得个体表现出多种性状。

基因的多效性表现为基因间的相互作用,机理是:生物的一切表现型都是蛋白质活性的表现,具体地说,是酶的作用,而这些酶又是在基因控制下合成的。生物体多数性状是许多酶共同作用的结果,也就是由多基因控制的,是这些基因相互作用的结果。例如,与玉米子粒糊粉层颜色这一性状有关的基因有A、C、R和P,它们分别位于玉米第Ⅲ、Ⅸ、Ⅹ、Ⅴ染色体上。实验证明,至少当存在A和C基因(不论纯合或杂合)的情况下,玉米子粒糊粉层才可能出现颜色,有A和C并补加R(也不论杂合或纯合),就能使糊粉层产生红色素,如果有A、C、R再加上P,就能合成紫色素,否则糊粉层是无色的。

5.复等位基因

所谓复等位基因(multiple alleles)是指在种群中,同源染色体的相同位点上,可以存在两个以上的等位基因,遗传学上把这种等位基因称为复等位基因。人类的ABO血型遗传就是复等位基因遗传现象的典型例子。

人类的ABO血型有A、B、AB、O四种类型,这四种表现型的基因型相应为IAIA、IAi;IBIB、IBi;IAIB;ii。IA、IB对i为显性,IA与IB为共显性。很显然,在上述基因型中涉及到三个基因IA、IB和i,这就是一组复等位基因。应当指出,在一个正常二倍体的细胞中,在同源染色体的相同位点上,只能存在一组复等位基因中的两个成员,只有在群体中不同个体之间,才有可能在同源染色体的相同位点上出现三个或三个以上的成员,例如,在血型遗传中甲个体为IAIB,乙个体可能为IAi或IBi……等。上述ABO血型的一组复等位基因就是这样,其四种血型是由这一组复等位基因,在不同个体间的不同组合所决定的,这些组合广泛分布于人群中,而形成A、B、AB和O不同血型的差别。根据父母的血型及分离定律,可以推测出子女中可能出现的血型和不可能出现的血型。

亲代的血型类型及其后代可能的血型

婚配

父母血型

在后代子女中可能出现的血型

表现型

可能基因型

基因型

表现型

 1

 O×O

 ii×ii

 ii

 O

 2

 O×A

 ii×IAi
ii×IAIA

 IAi,ii
 IAi

 A,O
A

 3

 O×B

ii×IBi
ii×IBIB

IBi,ii
IBi

B,O
B

 4

A×A 

IAi×IAi
IAIA×IAi
IAIA×IAIA 

IAIA,IAi,ii
IAIA,IAi
IAIA 

A,O
A
A  

 5

A×B

IAi×IBi
IAIA×IBi
IAi×IBIB
IAIA×IBIB

IAIB,IAi,IBi,ii
IAIB,IAi
IAIB,IBi
IAIB 

AB,A,B,O
AB,A
AB,B
AB 

 6

B×B 

IBi×IBi
IBi×IBIB
IBIB×IBIB 

IBIB,IBi,ii
IBIB,IBi
IBIB 

B,O
B
B

 7

O×AB 

ii×IAIB 

IAi,IBi 

A,B
 

 8

A×AB

IAi×IAIB
IAIA×IAIB 

IAIA,IAIB,IAi,IBi
IAIB,IAIA

AB,A,B
AB,A 

 9

B×AB 

IBi×IAIB
IBIB×IAIB 

IBIB,IAIB,IAi,IBi
IAIB,IBIB

AB,A,B
AB,B 

 10

AB×AB 

IAIB×IAIB

IAIA,IBIB,IAIB 

A,B,AB 

 

高等植物中,烟草是自交不育的,已知至少有15个自交不亲和基因,它们是S1、S2、……S15,构成了一个复等位基因系列,相互间没有显隐性关系。

6.人类性状遗传分析举例

人类中隐性基因遗传的典型例证要数味盲基因的遗传。隐性等位基因t是一种控制不能品尝出苯硫脲(简称PTC)或者有关化合物的基因。PTC是一种白色结晶物,由于含有硫酰胺基而具苦涩味。对于这种化合物,多数人是尝味者(taster),研究表明,在他们的舌根部滴入稀释至3.3×10-7~1×10-5的PTC溶液时,他们就能够品尝出PTC的苦涩味道;少数人是不能品尝者,把浓度很高的PTC溶液甚至结晶物放在这类人的舌根部,他们都不能品尝出PTC的苦涩味来,通常称这类人为对PTC味盲(nontaster)。味盲者同味盲者婚配,除极少数例外,只能生下味盲子女;尝味者与尝味者,或尝味者与味盲者婚配,可能会生下两种类型的子女。这说明味盲者是隐性纯合子tt,尝味者的基因型则无疑是TT或Tt。

再举一些人类遗传病的事例。先讲单基因遗传的例子。基因组中由基因突变产生的单个基因的异常,在遗传给下一代时有时会产生明显的病症。这种由单个致病基因引起的疾病称为单基因病。有许多人类的性状或遗传病可以用经典遗传学的基本理论来解释和分析,例如,人类耳垂的有无,血型的遗传,各种显性的或隐性的遗传病的遗传等,这类遗传都称为孟德尔遗传(Mendelian inheritance)。孟德尔遗传存在影响性状的主基因。主基因的异同可在人群中产生明显的性状差异,且这类基因的存在与否对性状的出现具有决定性的影响。单基因病即是致病主基因引起的遗传病。

传统的孟德尔遗传分析主要是通过统计不同亲代杂交产生的不同性状后代的数目来进行分析。即使在我们不知道造成性状的基因本身的性质或定位的情况下,仍然可以判断基因的显隐性和该性状的遗传方式。对人类遗传性状的研究无法采用杂交实验的方法,只能对具有该性状的家系成员的性状分布进行观察分析,通过对性状在家系后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率,这种方法称为系谱分析。判断一种性状的遗传方式往往需要分析具有该性状的许多家系并进行统计处理后才能得到明确而准确的结论。较大的家系的遗传分析,价值较高。

在进行系谱分析时,首先从家系中前来就诊或发现的第一个患病(或具有所研究的性状)个体开始,他也叫先证者;然后逐步追溯调查其他成员的发病(或有某性状的)情况。通过对尽可能多的家系成员,包括不具这一性状的个体的调查结果,根据人类系谱命名法绘制成系谱图。通过系谱分析可以判断某一性状是否由遗传决定,是否有主基因存在,传递方式的显隐性等,从而为寻找有关的基因及其在染色体上的定位、基因所决定的性状在家族中的复发风险估计提供依据。

(1)常染色体显性遗传病

致病基因位于常染色体上,在与正常的等位基因形成杂合子时可导致个体发病,即致病基因决定的是显性性状,所引起的疾病称为常染色体显性遗传(autosomal dominance inheritance,简称AD)病。

常染色体显性遗传病由于杂合子即可得病,我们可以通过个体是否发病而知道一个人是否带有和传递致病基因。理论上讲,病人的基因型可以是致病基因的纯合子(一般写为AA),也可以是杂合子(一般写作Aa)。但由于一般致病基因在人群中的频率很低,绝大多数患者应为杂合子,一般分析时,也假定患者为杂合子。纯合子的两个致病基因分别来自父母的遗传,只有在婚姻的双方都带有致病基因时才可能出现,而这种婚姻显然是很少见的。因此在一般情况下病人是杂合子患者,并且主要通过病人和正常人之间的婚姻向后代传递疾病。

A1型短指症是第一例被证实是人类显性遗传的疾病,这是一种表现为骨骼异常的AD病。我国科学家贺林已将该病的致病基因克隆。

AR病系谱的特点:

a.由于致病基因位于常染色体上,因而致病基因的遗传与性别无关,男女发病机会均等。

b.系谱中看不到连续遗传现象,常为散发病例,有时系谱中只有先证者一个患者。

c.患者的双亲往往表现型正常,但他们都是致病基因携带者。患者的兄弟姐妹中约有1/4的概率患病,3/4的概率为正常,在表现型正常的个体中有2/3的可能性是携带者。一般在小家系中有时看不到准确的发病比例,如果将相同婚配类型的小家系合并起来分析,就会看到近似的发病比例。

d.近亲婚配后代的发病率比非近亲婚配发病率高。这是由于近亲之间可能从共同的祖先传来某一相同的基因,所以他们基因相同的可能性较一般人要高。

7.概率的基本知识

孟德尔在分析自己的杂交实验结果和作出合理的推理时,都用到了数学分析的方法和思想,实质是数理统计的方法和思想,这里的核心就是概率论中的有关知识,我们现在进行遗传分析时也要用到这些概率知识。例如,一对等位基因的杂合子后代表现的3∶1性状分离,实际包括:等位基因的正常分离,并分别进入不同的配子,包含不同等位基因配子的受精能力相同,而且参与受精的配子是一个非常大的配子群体;含有不同等位基因配子的融合是一个随机过程,结果合子的基因型频率就等于配子类型的频率乘积,因而杂种后代的基因型频率可以直接由杂种产生的配子类型频率相乘得到;不同基因型合子的生活力相同,合子基因型频率就等于后代个体的基因型频率;显性完全的话,后代性状比在理论上是3∶1。两对等位基因的杂合子(位于非同源染色体上),一对等位基因分离趋向细胞的一极是随机的,另一对趋向一极也是随机的,结果在非等位基因进入配子时,进行了自由组合。此外,杂种后代的基因型和表现型的各种比值的求解,推断一个杂交组合后代的表现,在人类中某对夫妇生下患病后代的风险等。所有上述内容都涉及概率论和统计学原理的应用。

概率是指某一事件(A事件)发生的可能性的大小。一定要注意的是指事件还没有发生,只是如果发生,其可能性用百分数或分数表示是多少,常用P(A)表示。在一定的条件下具有多种可能结果而究竟出现哪一种结果事先不可预言的现象叫做随机现象。随机现象的每一个结果叫做一个随机事件,简称为事件。用大写的字母A,B,C等表示。事件的关系有很多种,这里只讲有关的几种。我们所涉及的事件之间的关系,一般包括互不相容事件、对立事件、独立事件等。

互不相容事件指事件A和事件B不能同时出现,就称A与B互不相容。例如,一对等位基因杂合子(Dd)自交后代中DD∶Dd∶dd之比为1∶2∶1。对任何一个显性个体,它不是DD,就是Dd,DD和Dd不能同为一个个体,它们就为互斥事件。

对立事件指所有不属于A事件的事件,也称为A的逆事件。例如,杂合子(Dd)自交后代中表现显性的个体为A事件,隐性个体就为A的对立事件。对立事件是互不相容的特例,它只有A事件和A的逆事件这两种事件。

独立事件指A事件的出现,并不影响B事件的出现,则称A事件与B事件为独立事件。两对等位基因杂合子(DdGg)在形成配子时,d趋向一极与G趋向同一极无关,所以d和G趋向同一极就是两个独立事件。

在讨论事件之间的关系时,需计算它们发生的概率是多少。进行概率计算要用到两个基本定理,即乘法定理和加法定理。

乘法定理:P(AB)=P(A)×P(B)

即两个独立事件共同出现的概率等于它们各自出现的概率之积。例如,两对夫妇同时都生男孩的概率为1/2×1/2=1/4。又如在豌豆中,F1是黄子叶饱满种子的双杂合子(YyRr),在F2中的一粒种子既是黄色又是饱满的概率应为3/4×3/4=9/16;求法如下:F2中黄色(只考虑一对性状)的比例为3/4,饱满(也只考虑一对性状)的比例也为3/4,两者相互独立,同时出现的概率就为3/4×3/4=9/16;其他比例依此类推。

加法定理:它可计算互斥事件出现的概率。设有两个事件(A和B),若A和B事件为互斥事件,则出现事件A或事件B的概率等于它们各自概率之和。例如,在豌豆子叶的颜色遗传中,F2应是3/4黄色、1/4绿色,但对于任一粒种子而言,是黄粒就不能是绿粒,反之亦然,那么子叶的黄和绿则为互斥事件。因此一粒种子其颜色为黄或绿的概率为:P(黄或绿)=P(黄)+P(绿)=3/4+1/4=1。又如在云南丽江,藏族居民血型的分布是:50%的O型,14.5%的A型,31.2%的B型,4.3%的AB型。一般情况下一人仅有一种血型,那么该地区藏民任1人出现A型或B型的概率应为:P(A或B)=P(A)+P(B)=14.5%+31.2%=45.7%。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。