编辑:sx_gaohm
2016-09-19
数学在人类文明的发展中起着非常重要的作用,数学推动了重大的科学技术进步。精品小编准备了人教版数学高三必修五第二单元同步测试,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.
1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( )
A.6 B.7 C.8 D.9
解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.
答案:A
2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是( )
A.12 B.1 C.2 D.3
解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.
答案:C
3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( )
A.1 B.-4 C.4 D.5
解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…
故{an}是以6为周期的数列,
∴a2 011=a6×335+1=a1=1.
答案:A
4.设{an}是等差数列,Sn是其前n项和,且S5
A.d<0 B.a7=0
C.S9>S5 D.S6与S7均为Sn的最大值
解析:∵S5
又S7>S8,∴a8<0.
假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.
∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9
答案:C
5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为( )
A.-12 B.12
C.1或-12 D.-2或12[
解析:设首项为a1,公比为q,
则当q=1时,S3=3a1=3a3,适合题意.
当q≠1时,a1(1-q3)1-q=3•a1q2,
∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,
解得q=1(舍去),或q=-12.
综上,q=1,或q=-12.
答案:C
6.若数列{an}的通项公式an=5 •252n-2-4•25n-1,数列{an}的最大项为第x项,最小项为第y项,则x+y等于( )
A.3 B.4 C.5 D.6
解析:an=5•252n-2-4•25n-1=5•25n-1-252-45,
∴n=2时,an最小;n=1时,an最大.
此时x=1,y=2,∴x+y=3.
答案:A
7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( )
A.a21a22 B.a22a23 C.a23a24 D.a24a25
解析:∵3an+1=3an-2,
∴an+1-an=-23,即公差d=-23.
∴an=a1+(n-1)•d=15-23(n-1).
令an>0,即15-23(n-1)>0,解得n<23.5.
又n∈N*,∴n≤23,∴a23>0,而a24<0,∴a23a24<0.
答案:C
8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( )
A.1.14a B.1.15a
C.11×(1.15-1)a D.10×(1.16-1)a
解析:由已知,得每年产值构成等比数列a1=a,w
an=a(1+10%)n-1(1≤n≤6).
∴总产值为S6-a1=11×(1.15-1)a.
答案:C
9.已知正数组成的等差数列{an}的前20项的和为100,那么a7•a14的最大值为( )
A.25 B.50 C.1 00 D.不存在
解析:由S20=100,得a1+a20=10. ∴a7+a14=10.
又a7>0,a14>0,∴a7•a14≤a7+a1422=25.
答案:A
10.设数列{an}是首项为m,公比为q(q≠0)的等比数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( )
A.在直线mx+qy-q=0上
B.在直线qx-my+m=0上
C.在直线qx+my-q=0上
D.不一定在一条直线上
解析:an=mqn-1=x, ①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y, ②
由②得qn=y-1,代入①得x=mq(y-1), 即qx-my+m=0.
答案:B
11.将以2为首项的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为( )
A.n2-n B.n2+n+2
C.n2+n D.n2-n+2
解析:因为前n-1组占用了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的首项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-1•2=n2-n+2.
答案:D
12.设m∈N*,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F(1 024)的值是( )
A.8 204 B.8 192
C.9 218 D.以上都不对
解析:依题意,F(1)=0,
F(2)=F(3)=1,有2 个
F(4)=F(5)=F(6)=F(7)=2,有22个.
F(8)=…=F(15)=3,有23个.
F(16)=…=F(31)=4,有24个.
…
F(512)=…=F(1 023)=9,有29个.
F(1 024)=10,有1个.
故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10.
令T=1×2+2×22+3×23+…+9×29,①
则2T=1×22+2×23+…+8×29+9×210.②
①-②,得-T=2+22+23+…+29-9×210 =
标签:高三数学专项练习
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。