您当前所在位置:首页 > 高中 > 高三 > 高三数学 > 高三数学知识点

高三数学函数与导数知识点

编辑:sx_wangha

2014-07-24

高三数学函数与导数知识点是高三数学必会必考的知识点,高三的同学马上面临的是高考前的第一次月考,更要加强对这些知识点的记忆,在月考中正常发挥,为高考打下坚实的基础!

1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法

3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

6.函数的单调性⑴单调性的定义:① 在区间 上是增函数 当 时有 ;② 在区间 上是减函数 当 时有 ;⑵单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。注:证明单调性主要用定义法和导数法。

7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论① 或 的周期为 ;② 的图象关于点 中心对称 周期为2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;

8.基本初等函数的图像与性质⑴幂函数: ( ;⑵指数函数: ;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;⑻其它常用函数:1 正比例函数: ;②反比例函数: ;特别的 2 函数 ;

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。