编辑:
2014-06-06
(2)当l⊥x轴时,由(1)知⊥;
当l不与x轴垂直时,设l的方程是:y=kx+m,即kx-y+m=0
则=?3m2=8(1+k2)(5分)
?(1+2k2)x2+4kmx+2m2-8=0,
Δ=16k2m2-4(1+2k2)(2m2-8)=(4k2+1)>0,
设A(x1,y1),B(x2,y2)
则,(7分)
x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2
-+m2xkb1.com
==0,即⊥.
即椭圆的内含圆x2+y2=的任意切线l交椭圆于点A、B时总有⊥.(9分)
(2)当l⊥x轴时,易知|AB|=2=(10分)
当l不与x轴垂直时,|AB|==
=(12分)
设t=1+2k2∈[1,+∞),∈(0,1]
则|AB|==
所以当=即k=±时|AB|取最大值2,
当=1即k=0时|AB|取最小值,
(或用导数求函数f(t)=,t∈[1,+∞)的最大值与最小值)
综上|AB|∈.(14分)
考生们只要加油努力,就一定会有一片蓝天在等着大家。以上就是威廉希尔app 的编辑为大家准备的湖南师大附中2014年高二下学期数学期末考试题答案
相关推荐
标签:高二数学试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。