编辑:sx_haody
2015-10-19
高考复习离不开教学参考书,如能合理使用,也会受益匪浅,再上台阶。以下是2016学年高考数学第一轮复习技巧,一起来看看吧!
锦囊一:判断命题真假的方法
判断四种形式的命题真假的基本方法是先判断原命题的真假,再判断逆命题的真假,然后根据等价关系确定否命题和逆否命题的真假.如果原命题的真假不好判断,那就首先判断其逆否命题的真假。
锦囊二:充要关系的判定技巧
充要条件的判断就是在两个条件之间互推.当问题是是的什么条件时,如果,反之不成立的话,则是的充分不必要条件(是的必要而不充分条件);如果,反之不成立的话,则是的必要不充分条件(是的充分不必要条件);若,则互为充要条件)。
锦囊三:命题的否定和一个命题的逆否命题的区别
命题的否定和一个命题的逆否命题是不同的,命题的否定是否定这个命题的结论,在这个命题与其否定这两个命题中,一定是一个真命题、一个假命题,但一个命题的否命题只是相对于原命题得到的一个形式上的命题,这两个命题之间的真假关系没有必然的联系.
锦囊四:对应、映射和函数的关系巧记忆
对应、映射和函数三个概念的内涵逐步丰富.对应中的唯一性形成映射,映射中的非空
数集形成函数;也就是说函数是一种特殊的映射,而映射又是一种特殊的对应.
锦囊五:函数解析式的求法
函数解析式的问题是高考的命题热点,其求解方法很多,最常用的有以下几种:①换元法和配凑法;②待定系数法:适用于已知函数模型(如指数函数、二次函数等)和模型满足的条件下解析式,一般先设出函数的解析式,然后再根据题设条件待定系数;③解方程组法;④函数的性质法,在求某些函数解析式时,只给出了部分条件(如函数的定义域、经过某些特殊点、部分关系式、部分图象特征等)这类问题具有抽象性、综合性、和技巧性等特点,需要利用函数的性质来解;⑤赋值法:所给函数有两个变量时,可对这两个变量赋予特殊数值代入,或给两个变量赋予一定的关系代入,再用已知条件,可求出未知函数,至于赋予什么特殊值,应根据题目特征而定。
锦囊六:巧解函数定义域问题
1.根据函数的解析式求函数的定义域,主要从以下几个方面来考虑:分式中分母不为零;
偶次方根下的被开方数大于或等于零;对数函数中底数且,真数;指数函数中底数且,中等,若求含有多个限制条件的函数的定义域时,应先分别求出满足每一个条件的自变量的范围,再取它们的交集即可;
2.复合型函数定义域的问题包含两类:一类是已知原函数的定义域
来求复合函数的定义域,只需满足,解出即可;一类是已知复合函数的定义域来求原函数的定义域,即的值域为的定义域;
③涉及实际意义的函数的定义域;④根据函数的定义域,求相关的参数问题。
锦囊七:判断函数单调性的方法巧掌握
1.定义法。
2.利用一些常见函数的单调性,如一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的单调性加以判断。
3.图象法。
4.在共同的定义域上,两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数。
5.奇函数在关于原点的对称区间上具有相同的单调性;偶函数在关于原点的对称区间上具有相反的单调性。
6.互为反函数的两个函数在各自的定义域区间上具有相同的单调性。
7.对于复合函数的单调性,遵循“同增异减”的原则,即只有内外层函数相同时则为增函数,一增一减则为减函数。
8.导数法,函数在某区间内可导,如果,则函数为增函数,如果,则函数为减函数。
锦囊八:函数奇偶性的判断方法及解题策略
确定函数的奇偶性,一般先考查函数的定义域是否关于原点对称,然后判断与的关系,常用方法有:①利用奇偶性定义判断;②利用图象进行判断,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以避免对自变量的繁琐的分类讨论。
锦囊九:必须掌握的函数的周期性
在解决一些函数的奇偶性、单调性相结合的综合性小问题时,常常涉及到求函数的周期,这就需要我们掌握一些函数的周期性的主要结论:①如果(),那么是周期函数,其中一个周期;②如果(),那么是周期函数,其中一个周期;③如果定义在上的函数有两条对称轴、对称,那么是周期函数,其中一个周期,特别的,如果偶函数的图像关于直线()对称,那么是周期函数,其中一个周期;④如果函数同时关于两点、()成中心对称,那么是周期函数,其中一个周期,特别的,如果奇函数关于点()成中心对称,那么是周期函数,其中一个周期;⑤如果函数的图像关于点()成中心对称,且关于直线()成轴对称,那么是周期函数,其中一个周期,特别的,如果奇函数的图像关于直线()对称,那么是周期函数,其中一个周期;⑥如果或,那么是周期函数,其中一个周期;⑦如果或,那么是周期函数,其中一个周期;⑧如果,那么是周期函数,其中一个周期.
标签:西藏高考数学
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。