您当前所在位置:首页 > 高考 > 高考数学 > 高考数学试题

2015高考数学一轮复习函数的奇偶性与周期性专题检测(带答案)

编辑:sx_liujy

2015-12-05

验证奇偶性的前提要求函数的定义域必须关于原点对称。以下是函数的奇偶性与周期性专题检测,请大家仔细进行检测。

一、选择题

1.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于(  ).A.3 B.1 C.-1 D.-3

解析 由f(-0)=-f(0),即f(0)=0.则b=-1,

f(x)=2x+2x-1,f(-1)=-f(1)=-3.

答案 D

2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为 (  ).

A.-1 B.0 C.1 D.2

(构造法)构造函数f(x)=sin x,则有f(x+2)=sin=-sin x=-f(x),所以f(x)=sin x是一个满足条件的函数,所以f(6)=sin 3π=0,故选B.

答案 B

3.定义在R上的函数f(x)满足f(x)=f(x+2),当x[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是(  ).

A.f>f B.f(sin 1)f(sin 2)

解析 当x[-1,1]时,x+4[3,5],由f(x)=f(x+2)=f(x+4)=2-|x+4-4|=2-|x|,

显然当x[-1,0]时,f(x)为增函数;当x[0,1]时,f(x)为减函数,cos=-,sin =>,又f=f>f,所以f>f.

答案 A

4.已知函数f(x)=则该函数是(  ).

A.偶函数,且单调递增 B.偶函数,且单调递减

C.奇函数,且单调递增 D.奇函数,且单调递减

解析 当x>0时,f(-x)=2-x-1=-f(x);当x<0时,f(-x)=1-2-(-x)=1-2x=-f(x).当x=0时,f(0)=0,故f(x)为奇函数,且f(x)=1-2-x在[0,+∞)上为增函数,f(x)=2x-1在(-∞,0)上为增函数,又x≥0时1-2-x≥0,x<0时2x-1<0,故f(x)为R上的增函数.

答案 C.已知f(x)是定义在R上的周期为2的周期函数,当x[0,1)时,f(x)=4x-1,则f(-5.5)的值为(  )

A.2 B.-1 C.- D.1

解析 f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.

答案 .设函数D(x)=则下列结论错误的是(  ).

A.D(x)的值域为{0,1} B.D(x)是偶函数

C.D(x)不是周期函数 D.D(x)不是单调函数

解析 显然D(x)不单调,且D(x)的值域为{0,1},因此选项A、D正确.若x是无理数,-x,x+1是无理数;若x是有理数,-x,x+1也是有理数.D(-x)=D(x),D(x+1)=D(x).则D(x)是偶函数,D(x)为周期函数,B正确,C错误.

答案 C二、填空题

.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.

解析 由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),1-|1+a|=1-|-1+a|,a=0.

答案 0

.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.

解析 因为y=f(x)+x2是奇函数,且x=1时,y=2,所以当x=-1时,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.

答案 -1.设奇函数f(x)的定义域为[-5,5],当x[0,5]时,函数y=f(x)的图象如图所示,则使函数值y<0的x的取值集合为________.解析 由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y<0的x的取值集合为(-2,0)(2,5).答案 (-2,0)(2,5)

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。