编辑:sx_liujy
2015-12-03
完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法‥‥‥,在第n类办法中有mn种不同的方法,以下是分类加法计数原理专题检测,请考生及时练习。
一、选择题
1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )
A.72种 B.48种
C.24种 D.12种
解析 先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,
D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.
答案 A
2.如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( ).
A.400种 B.460种
C.480种 D.496种
解析 从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,不同涂法有6×5×4×(1+3)=480(种),故选C.
答案 C
3.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且同学甲不参加“围棋苑”,则不同的参加方法的种数为( ).
A.72 B.108 C.180 D.216
解析 设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:
(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有CA种方法, 故共有CCA种参加方法;
(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法;
综合(1)(2),共有CCA+CA=180种参加方法.
答案 C
.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )
A.8种 B.9种
C.10种 D.11种
解析 分四步完成,共有3×3×1×1=9种.
答案 B
.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( ).
A.300种 B.240种 C.144种 D.96种
解析 甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有CA-CA=240.
答案 B
.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有( ).
A.12种 B.24种 C.30种 D.36种
解析 分三步,第一步先从4位同学中选2人选修课程甲.共有C种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C×2×2=24(种).
答案 B
二、填空题
标签:高考数学试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。