人教版七年级数学说课稿《实数》说课稿

编辑:sx_bilj

2014-09-13

说课稿不同于教案,教案只说“怎样教”,而说课稿则重点说清“为什么要这样教”,小编整理了这篇人教版七年级数学说课稿《实数》说课稿,希望可以帮助到大家!

尊敬的各位领导、评委老师:

大家好!今天我为大家说课的内容是新人教版七年级数学(下册)第六章第三节“实数”的第一个课时。下面我就教材分析,学情分析,教法学法分析,教学媒体,课堂结构,教学过程,教学评价几个方面来对这节课进行阐述。

一、教材分析

1、教材的地位和作用

本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。因此,让学生正确而深刻地理解实数是非常重要的。

无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容。

2、教学重难点

根据教学大纲对这部分内容的要求及本课的特点,结合学生实际情况,我把 本节课的教学重难点确定为:

重点:了解无理数和实数的概念;

知道实数与数轴上的点具有一一对应的关系。

难点:对无理数的认识。

3、教学目标

知识与技能:了解无理数和实数的概念;

知道实数与数轴上的点具有一一对应的关系。

过程与方法:通过无理数的引入,经历数系从有理数扩展到实数的过程,

培养从特殊到一般、具体到抽象的逻辑思维能力;

渗透数形结合及分类的思想。

情感与态度:了解无理数的产生过程,使学生感受丰富的数学文化,

体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

二、学情分析

新的《课程标准》对学生掌握实数要求不高,但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。

在学习本节课前,学生已掌握平方根、立方根同时也初步接触过等具体的无理数。无理数的概念比较抽象,特别是无理数在数轴上的表示、实数与数轴上的一一对应关系都需要一个渐进的理解过程。要让学生充分讨论与思考,归纳与总结,历经知识发展与运用。

三、教法学法分析

1.教法分析

为了更好的把握教学内容的整体性、连续性,本节课采用问题导入法引入新课,让学生回顾认识数的过程;通过类比归纳法和探究分析法经历实数的认识过程,从而较好地完成实数概念的构建和实数与数轴上的点的一一对应关系的认识,达到教学目标。

2.学法分析

为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流相结合,把无理数和实数的概念及知道实数与数轴的点的一一对应关系确定为教学重点;无理数的认识确定为教学难点。课堂上充份调动学生的积极性,启发学生进行观察、类比、分析,让参与到概念的建立,真正的让学生进行探究,突出学生教学主体的地位。

四、 教学媒体

教学形式上充分利用电脑多媒体优化数学课堂教学,从生活实际出发,让学生亲身感受数学的奇妙,激发学生学习的兴趣。增强用数学的意识,养成及时归纳总结的良好习惯,提高课堂效率。

五、课堂结构

曾经有人说过这么一句话“人的心灵深处都有一个根深蒂固的需要,这就是希望感到自己是一个发现者,研究者,探究者。”为此在教学过程中我努力贯彻“教师为主导,学生为主体,探究为主线,思维为核心”的教学思想,我设计了以下课堂教学流程。

第一个环节:探究新知,引入课题

第二个环节:自学新知,自主探索

第三个环节:探究新知,拓展深化

第四个环节:应用新知,及时反馈

第五个环节:课堂小结,反思新知

第六个环节:布置作业,巩固新知

六、教学过程

1、探究新知,引入课题

问题1 有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?

师生活动:学生完成分数到小数的换算,观察小数的形式。教师逐步引导学生对小数点后数字的探究,让学生发现:任意一个分数一定都能写出有限小数或是无限循环小数的形式;进一步引导学生对整数的研究,让学生得出结论:整数可以看成小数点后是0的小数。最后总结:任何一个有理数都可以写成有限小数或是无限循环小数的形式;反过来,任何有限小数和无限循环小数也都是有理数。

设计意图:让学生从探究活动开始,体会有理数都可以写成有限小数和无限循环小数的形式。注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的,激发学生的求知欲。

2、自学新知,自主探索

问题2 你认为小数除了上述类型外,还会有什么类型?

师生活动:通过对数的归纳辨析,与有理数对照,师生共同归纳出前两节学过的一些平方根和立方根都是无限不循环小数,他们不同于有限小数和无限不循环小数,是一类不同于有理数的数,由此教师给出无理数的概念:无限不循环小数叫无理数,并指出π=3.141 592 65…也是无理数。像有理数一样,无理数也有正负之分,例如、、π是正无理数,—,—,—π是负无理数,进而给出实数的概念及实数的分类。分类如下:

设计意图:让学生回忆曾经学过的无限不循环小数是不同于有理数的数,为教师引出无理数概念作准备。

问题3 因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?

师生活动:教师在逐步引导时,启发学生类比有理数的分类,明确分类的基本原则:按照某个标准,不重不漏。学生独立思考后,小组讨论得到如下分类:

设计意图:通过学生互相的讨论和交流,可以加深对无理数和实数的理解,同时让学生明确实数的分类可以有不同的方法,初步形成对实数整体性的认识。

3、探究新知,拓展深化

问题4 我们知道每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?

师生活动:学生独立思考后讨论交流,借助第6.1节的得出和手中的学具进行操作(图1)

标签:数学说课稿

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。