编辑:sx_chenjp
2016-03-11
刚刚走过的这个学期,同学们用自己最出色的表现为我们的班级增光添彩,威廉希尔app 初中频道为大家准备了九年级下册数学教学计划:第27章第3节《位似》,欢迎阅读与选择!
教学目标:
1、知识目标:
①了解位似图形及其有关概念;
②了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。
2、能力目标:
①利用图形的位似解决一些简单的实际问题;
②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。
3、情感目标:
①通过学习培养学生的合作意识;
②通过探究提高学生学习数学的兴趣。
教学重点:
探索并掌握位似图形的定义和性质;
教学难点:
运用定义和性质进行简单的位似图形的证明和计算。
教学方法:
从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。
教学准备:
刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、
教学手段:
小组合作、多媒体辅助教学
教学设计说明:
1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.
2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.
教学过程:
一、创设情境 引入新知
观察大屏幕有五个图形,每个图形中的四边形abcd和四边形a1b1c1d1 都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?
(学生经过小组讨论交流的方式总结得出:)
特点:(1)两个图形相似:
(2)每组对应点所在的直线交于一点。
二、合作交流 探究新知
请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?
如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。议一议 观察上图中的五个图形,回答下列问题: (1) 在各图形中,位似图形的位似中心与这两个图形有什么位置关系? (2) 在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。(每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)
位似图形对应点到位似中心的距离之比等于相似比。由此得出:
位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。三、指导应用 深化理解
(同学们观察大屏幕出示的问题)
例1如图d,e分别是ab,ac上的点。(1)如果de∥bc,那么△ade和△abc位似图形吗?为什么?(2)如果△ade和△abc是位似图形,那么de∥bc吗?为什么?小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?
根据是位似图形的定义。
需要两个条件:
!、△ade和△abc相似;
2、对应点所在的直线交于一点。
问题2:已知△ade和△abc是位似图形,我们根据什么又能得出什么结论?
根据位似图形的性质得出:
1、对应点和位似中心在同一条直线上;
2、它们到位似中心的距离之比等于相似比。
(一生口述师板书:)
解:(1)△ade和△abc是位似图形.理由是:
∵de∥bc
∴∠aed=∠b, ∠aed=∠c.
∵△ade∽△abc.
标签:数学教学计划
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。