编辑:sx_chenjp
2016-03-04
学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。精品小编精心为大家整理了这篇人教版九年级下册数学第26章教学计划:二次函数,供大家参考。
教学目标:
(一)教学知识点
1.经历抽象反比例函数概念的过程、领会反比例函数的意义,理解反比例函数的概念.
2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.
3.会从函数图象中获取信息,解决实际问题.
(二)能力训练要求
1.熟练掌握本章的知识网络结构.
2.经历抽象反比例函数概念的过程,理解反比例函数的概念,培养学生的抽象思维能力.
3.经历一次函数的图象及其性质的探索过程,在交流中发展学生的合作意识和能力.
4.能利用图象解决实际问题.
(三)情感与价值观要求
通过本章内容的回顾与思考,培养学生的归纳、整理等能力;能利用反比例函数的性质及图象解决实际问题,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力.
教学重点:反比例函数的概念,会画反比例函数的图象,并掌握其性质.反比例函数的应用.
教学难点:探索反比例函数的主要性质.反比例函数的应用.
教学方法:师生交流互动法.
教具准备:多媒体课件
教学过程:
Ⅰ.导入
[师]本章的内容已全部学完,请大家先回忆一下,本章学习了哪些主要内容?
[生]反比例函数的定义;反比例函数的图象及性质;反比例函数的应用.
[师]下面请大家系统全面地进行复习.
Ⅱ.重点知识回顾
一、本章知识结构
[师]由刚才大家的回忆,我们一齐来构造本章内容结构图,好吗?(给学生时间让学生自己构造,然后出示投影片)
1.本章内容框架
[师]同学们可以根据以上内容框架,
用自己的语言归纳总结本章内容.
二、举出现实生活中有关反比例函数
的实例,并归纳反比例函数概念.
[生]例:当三角形的面积是12cm2时,
它的底边a(cm)是这个底边上的高h(cm)
的函数.
解:a=.
在上式中,每给h一个值,相应地就
确定了一个a的值.因此a是h的函数,又它们之间的关系符合y=(k≠0),因此,a是h的反比例函数.
三、说说函数y=和y=-的图象的联系和区别.
[生]联系:(1)图象都是由两支曲线组成;
(2)它们都不与坐标轴相交;
(3)它们都不过原点,既是中心对称图形,又是轴对称图形.
区别:(1)它们所在的象限不同,y=的两支曲线在第一和第三象限;y=-的两支曲线在第二和第四象限.
(2)y=的图象在每个象限内,y随x的增大而减小:y=-的图象在每个象限内,y随x的增大而增大.
[师]还有一点.虽然y=和y=-的图象不同,但是在这两个函数图象上任取—点,过这两点分别作x轴、y轴的平行线,与坐标轴围成的矩形面积相等,都为2.
四、画反比例函数图象的步骤,讨论反比例函数图象的性质
[生]画图象的步骤有列表,描点,连线.在画反比例函数的图象时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.
反比例函数图象的性质有:
标签:数学教学计划
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。