编辑:sx_jixia
2016-03-16
初中最重要的阶段,大家一定要把握好初中,多做题,多练习,为中考奋战,编辑老师为大家整理了九年级下册数学第二章检测试题,希望对大家有帮助。
一、选择题(每小题3分,共30分)
1.已知二次函数y=a(x+1)2 b(a≠0)有最小值1,则a、b的大小关系为( )
A.a>b B.a
2.(2014•成都中考)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )
A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x-1)2+4 D.y=(x-1)2+2
3.(河南中考)在平面直角坐标系中,将抛物线y=x2 4先向右平移2个单位长度,再向上平移2个单位长度,得到的抛物线的表达式是( )
A.y=(x+2)2+2 B.y=(x 2)2 2 C.y=(x 2)2+2 D.y=(x+2)2 2
4.一次函数 与二次函数 在同一平面直角坐标系中的图象可能是( )
5.已知抛物线 的顶点坐标是 ,则 和 的值分别是( )
A.2,4 B. C.2, D. ,0
6.对于函数 ,使得 随 的增大而增大的 的取值范围是( )
A.x>-1 B.x>0 C.x<0 D.x<-1
7.(2015•兰州中考)二次函数y=a +bx+c的图象如图所示,点C在y轴的正半轴上,且OA=OC,则( )
A.ac+1=b B.ab+1=c C.bc+1=a D.以上都不是
8.(2015•陕西中考)下列关于二次函数y=a -2ax+1(a>1)的图象与x轴交点的判断,正确的是( ) 第7题图
A.没有交点
B.只有一个交点,且它位于y轴右侧
C.有两个交点,且它们均位于y轴左侧
D.有两个交点,且它们均位于y轴右侧
9. (2015•浙江金华中考)图②是图①中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y= - +16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为( )
① ②
第9题图
A.16 米 B. 米 C.16 米 D. 米
10.(重庆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对
称轴为直线x= .下列结论中,正确的是( )
A.abc>0 B.a+b=0
C.2b+c>0 D.4a+c<2b
二、填空题(每小题3分,共24分)
11.(苏州中考)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x 1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“=”或“<”).
12.(2014•安徽中考)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为y= .
13(2015•黑龙江绥化中考)把二次函数y= 的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的表达式是________.
14.(2014•杭州中考)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线对称轴的距离等于1,则抛物线的函数表达式为 .
15.(湖北襄阳中考)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y=60x 1.5x2,该型号飞机着陆后需滑行 m才能停下来.
16.设 三点依次分别是抛物线 与 轴的交点以及与 轴的两个交点,则△ 的面积是 .
17.(河南中考)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为 .
18.有一个二次函数的图象,三位同学分别说出了它的一些特点:
甲:对称轴为直线 ;
乙:与 轴两个交点的横坐标都是整数;
丙:与 轴交点的纵坐标也是整数.
请你写出满足上述全部特点的一个二次函数表达式__________________.
三、解答题(共66分)
19.(7分)把抛物线 向左平移2个单位长度,同时向下平移1个单位长度后,恰好与抛物线 重合.请求出 的值,并画出函数的示意图.
20.(7分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军大炮A与射击目标B的水平距离为600 m,炮弹运行的最大高度为1 200 m.
(1)求此抛物线的表达式.
(2)若在A、B之间距离A点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.
21.(8分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.
22.(8分)已知二次函数y=(t+1)x2+2(t+2)x+ 在x=0和x=2时的函数值相等.
(1)求二次函数的表达式;
(2)若一次函数y=kx+6(k≠0)的图象与二次函数的图象都经过点A( 3,m),求m和k
的值.
23.(8分)(哈尔滨中考)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数表达式(不要求写出自变量x的取值范围).
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?(参考公式:当x= 时,二次函数y=ax2+bx+c(a≠0)有最小(大)值
24.(8分)如图所示,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐 标系.
(1)求抛物线的表达式;
(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h= 9)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明在这一时段内,需多少小时禁止船只通行?
25.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.
(1)若花园的面积为192 m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
26.(10分)已知二次函数y=x2-2mx+m2+3(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点.
(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
标签:数学同步练习
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。