2016年新人教版九年级数学上册第24章试卷及答案解析

编辑:

2016-09-28

∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,

∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,

∴∠A=∠BOE,

∴△AOD∽OBE,

∴ = ,

∴ = ,

解得x=1.6,

故选:B.

【点评】本题考查了切线的性质.相似三角形的性质与判定,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形,证明三角形相似解决有关问题.

9.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为(  )

A.25° B.30° C.35° D.40°

【考点】切线的性质.

【专题】几何图形问题.

【分析】连接OC,根据切线的性质求出∠OCD=90°,再由圆周角定理求出∠COD的度数,根据三角形内角和定理即可得出结论.

【解答】解:连接OC,

∵CD是⊙O的切线,点C是切点,

∴∠OCD=90°.

∵∠BAC=25°,

∴∠COD=50°,

∴∠D=180°﹣90°﹣50°=40°.

故选:D.

【点评】本题考查的是切线的性质,熟知圆的切线垂直于经过切点的半径是解答此题的关键.

10.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是(  )

A. B. C. D.

【考点】切线的性质;相似三角形的判定与性质;锐角三角函数的定义.

【专题】几何图形问题;压轴题.

【分析】(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB= .利用Rt△BFP∽RT△OAF得出AF= FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.

【解答】解:连接OA、OB、OP,延长BO交PA的延长线于点F.

∵PA,PB切⊙O于A、B两点,CD切⊙O于点E

∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,

∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,

∴PA=PB= .

在Rt△PBF和Rt△OAF中,

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。