编辑:
2015-01-14
分析: 第一次降价后的价格=原价×(1﹣降低的百分率),第二次降价后的价格=第一次降价后的价格×(1﹣降低的百分率),把相关数值代入即可.
解答: 解:∵原价为200元,平均每次降价的百分率为x,
∴第一次降价后的价格=200×(1﹣x),
∴第二次降价后的价格=200×(1﹣x)×(1﹣x)=200×(1﹣x)2,
∴根据第二次降价后的价格为162元,列方程可得200(1﹣x)2=162,
故选B.
点评: 本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
8.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y= 的图象上.下列结论中正确的是( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y1>y2 D. y2>y3>y1
考点: 反比例函数图象上点的坐标特征..
分析: 先把点(﹣1,y1),(2,y2),(3,y3)分别代入反比例函数解析式求出y1,y2,y3,分别比较大小即可.
解答: 解:把点(﹣1,y1),(2,y2),(3,y3)分别代入反比例函数y= ,
得y1=1,y2=﹣ ,y3=﹣ ,
即y1>y3>y2.
故选B.
点评: 本题考查了反比例函数图象上点的坐标特征:反比例函数y= (k≠0)的图象上的点的横纵坐标之积为k.
9.(3分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( )
A. 25° B. 30° C. 45° D. 60°
考点: 等边三角形的判定与性质..
专题: 压轴题.
分析: 先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.
解答: 解:△ABC沿CD折叠B与E重合,
则BC=CE,
∵E为AB中点,△ABC是直角三角形,
∴CE=BE=AE,
∴△BEC是等边三角形.
∴∠B=60°,
∴∠A=30°,
故选B.
点评: 考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.
10.(3分)下列命题:
①方程x2=x的解是x=1;
②有两边和一角相等的两个三角形全等;
③顺次连接等腰梯形各边中点所得的四边形是菱形;
④4的平方根是2.
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。