二次函数y=ax2+bx+c 的图象

编辑:haiyangcms

2013-06-18

教学目标:

1、使学生进一步理解二次函数的基本性质;

2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.

3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.

教学重点:初步理解数形结合的数学思想

教学难点:初步理解数形结合的数学思想

教学用具:微机

教学方法:探究式、小组合作学习

教学过程:

例1、已知:抛物线y=x2-(m2-1)x-2m2-2

⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

⑵m取什么实数时,两交点间距离最短?是多少?

解:

△ = (m2-1)2+4(2m2+2)

= m4-2m2+1+8m2+8

= m4+6m2+9

= (m2+3)2

m2≥0

∴m2+3>0

∴△>0

∴抛物线与x轴有两个交点

问题:为什么说当△>0时,抛物线y = ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)

设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.

数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)

这样交点问题就转化成求这个二元二次方程组的解.代入y = 0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根.∴y = ax2+bx+c

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。