垂直于弦的直径

编辑:

2013-06-18

(七)作业:教材P84中14题.

第三课时 垂径定理及推论在解题中的应用

教学目的:

⑴要求学生掌握垂径定理及其推论,会解决有关的证明,计算问题.

⑵培养学生严谨的逻辑推理能力;提高学生方程思想、分类讨论思想的应用意识.

⑶通过例4(赵州桥)对学生进行爱国主义的教育;并向学生渗透数学来源于实践,又反过来服务于实践的辩证唯物主义思想

教学重点:垂径定理及其推论在解题中的应用

教学难点:如何进行辅助线的添加

教学内容:

(一)复习

1.垂径定理及其推论1:对于一条直线和一个圆来说,具备下列五个条件中的任何个,那么也具有其他三个:⑴ 直线过圆心 ;⑵ 垂直于弦 ;⑶ 平分弦 ;⑷ 平分弦所对的优弧 ;⑸ 平分弦所对的劣弧.可简记为:“知2推3”

推论2:圆的两条平行弦所夹的弧相等.

2.应用垂径定理及其推论计算(这里不管什么层次的学生都要自主研究)

涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r = h+d   ;  r2 = d2 + (a/2)2

3.常添加的辅助线:(学生归纳)

⑴ 作弦心距 ;⑵ 作半径 .------构造直角三角形

4.可用于证明:线段相等、弧相等、角相等、垂直关系;同时为圆中的计算、作图提供依据.

(二)应用例题:(让学生分析,交流,解答,老师引导学生归纳)

例1、1300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧中点到弦的距离,也叫弓形的高)为7.2米,求桥拱的半径(精确到0.1米).

说明:①对学生进行爱国主义的教育;②应用题的解题思路:实际问题——(转化,构造直角三角形)——数学问题.

例2、已知:⊙O的半径为5 ,弦AB∥CD ,AB = 6 ,CD =8 .求:AB与CD间的距离.(让学生画图)

解:分两种情况:

(1)当弦AB、CD在圆心O的两侧

过点O作EF⊥AB于E,连结OA、OC,

又∵AB∥CD,∴EF⊥CD.(作辅助线是难点,学生往往作OE⊥AB,OF⊥AB,就得EF=OE+OF,错误的结论)

由EF过圆心O,EF⊥AB,AB = 6,得AE=3,

在Rt△OEA中,由勾股定理,得

,∴

同理可得:OF=3

∴EF=OE+OF=4+3=7.

(2)当弦AB、CD在圆心O的同侧

同(1)的方法可得:OE=4,OF=3.

∴.

说明:①此题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形——分析图形——数形结合——解决问题;②培养学生作辅助线的方法和能力.

例3、 已知:如图,AB是⊙O的弦,半径OC∥AB ,AB=24 ,OC = 15 .求:BC的长.

解:(略,过O作OE⊥AE于E ,过B作BF⊥OC于F ,连结OB.BC = )

说明:通过添加辅助线,构造直角三角形,并把已知与所求线段之间找到关系.

(三)应用训练:

P8l中1题.

在直径为650mm的圆柱形油槽内装入一些油后.截面如图所示,若油面宽AB=600mm,求油的最大深度.

学生分析,教师适当点拨.

分析:要求油的最大深度,就是求有油弓形的高,弓形的高是半径与圆心O到弦的距离差,从而不难看出它与半径和弦的一半可以构造直角三角形,然后利用垂径定理和勾股定理来解决.

(四)小结:

1. 垂径定理及其推论的应用注意指明条件.

2. 应用定理可以证明的问题;注重构造思想,方程思想、分类思想在解题中的应用.

(五)作业:教材P84中15、16题,P85中B组2、3题.

探究活动

如图,直线MN与⊙O交于点A、B,CD是⊙O的直径,CE⊥MN于E,DF⊥MN于F,OH⊥MN于H.

(1)线段AE、BF之间存在怎样的关系?线段CE、OH、DF之间满足怎样的数量关系?并说明理由.

(2)当直线CD的两个端点在MN两侧时,上述关系是否仍能成立?如果不成立,它们之间又有什么关系?并说明理由.

(答案提示:(1)AE=BF,CE+DF=2OH,(2)AE=BF仍然成立,CE+DF=2OH不能成立.CE、DF、OH之间应满足)

更多精彩内容请点击: 2018威廉希尔决赛赔率  > 初三 > 数学 > 初三数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。