垂直于弦的直径

编辑:haiyangcms

2013-06-18

第一课时 垂直于弦的直径(一)

教学目标:

(1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;

(2)进一步培养学生观察问题、分析问题和解决问题的能力;

(3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.

教学重点、难点:

重点:①垂径定理及应用;②从感性到理性的学习能力.

难点:垂径定理的证明.

教学学习活动设计:

(一)实验活动,提出问题:

1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.

2、提出问题:老师引导学生观察、分析、发现和提出问题.

通过“演示实验——观察——感性——理性”引出垂径定理.

(二)垂径定理及证明:

已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.

求证:AE=EB,  =  ,  =  .

证明:连结OA、OB,则OA=OB.又∵CD⊥AB,∴直线CD是等腰△OAB的对称轴,又是⊙O的对称轴.所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,  、  分别和  、  重合.因此,AE=BE,  =  ,  =  .从而得到圆的一条重要性质.

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

组织学生剖析垂径定理的条件和结论:

CD为⊙O的直径,CD⊥AB AE=EB,  =  ,  =  .

为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.

(三)应用和训练

例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.

分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB= AB=4cm.此时解Rt△AOE即可.

解:连结OA,作OE⊥AB于E.

则AE=EB.

∵AB=8cm,∴AE=4cm.

又∵OE=3cm,

在Rt△AOE中,

(cm).

∴⊙O的半径为5 cm.

说明:①学生独立完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r = h+d; r2 = d2 + (a/2)2

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。