编辑:haiyangcms
2013-06-18
教学目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
教学重点:圆周角的概念和圆周角定理
教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.
教学活动设计:(在教师指导下完成)
(一)圆周角的概念
1、复习提问:
(1)什么是圆心角?
答:顶点在圆心的角叫圆心角.
(2)圆心角的度数定理是什么?
答:圆心角的度数等于它所对弧的度数.(如右图)
2、引题圆周角:
如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)
定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角
3、概念辨析:
教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.
学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.
(二)圆周角的定理
1、提出圆周角的度数问题
问题:圆周角的度数与什么有关系?
经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.
(在教师引导下完成)
(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.
提出必须用严格的数学方法去证明.
证明:(圆心在圆周角上)
(2)其它情况,圆周角与相应圆心角的关系:
当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.
证明:作出过C的直径(略)
圆周角定理: 一条弧所对的
周角等于它所对圆心角的一半.
说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。