编辑:
2013-06-18
3、迁移圆周角定理的证明方法
先证明了特殊情况,在考虑圆心在弦切角的外部和内部两种情况.
组织学生讨论:怎样将一般情况的证明转化为特殊情况.
如图 (1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.
如图 (2),圆心O在∠CAB内,作⊙O的直径AQ.连结PQ,则∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,
(在此基础上,给出证明,写出完整的证明过程)
回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完 全归纳、从而证明了上述猜想是正确的,得:
弦切角定理:弦切角等于它所夹的弧对的圆周角.
4.深化结论.
练习1 直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.
练习2 如图,DE切⊙O于A,AB,AC是⊙O 的弦,若=,那么∠DAB和∠EAC是否相等?为什么?
分析:由于 和 分别是两个弦切角∠OAB和∠EAC所夹的弧.而 = .连结B,C,易证∠B=∠C.于是得到∠DAB=∠EAC.
由此得出:
推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.
(四)应用
例1如图,已知AB是⊙O的直径,AC是弦,直线CE和⊙O 切于点C,AD⊥CE,垂足为D
求证:AC平分∠BAD.
思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.
证明:(学生板书)
组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.
思路二,连结OC,由切线性质,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可证得结论。
思路三,过C作CF⊥AB,交⊙O于P,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.
练习题
1、如图,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=______度.
2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3:1,则夹劣弧的弦切角∠BAC=________
3、如图,经过⊙O上的点T的切线和弦AB的延长线相交于点C.
求证:∠ATC=∠TBC.
(此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)
(五)归纳小结
教师组织学生归纳:
(1)这节课我们主要学习的知识;
(2)在学习过程中应用哪些重要的数学思想方法?
(六)作业:教材P13l习题7.4A组l(2),5,6,7题.
探究活动
一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明.
提示:是圆周角(它是弦切角定理的逆命题).分三种情况证明(证明略).
更多精彩内容请点击: 2018威廉希尔决赛赔率 > 初三 > 数学 > 初三数学教案
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。