编辑:
2013-06-13
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
思考
上述结论还可通过逻辑推理得到.如图25.2.4,Rt△ABC中,∠C=90°,∠A=30°,作∠BCD=60°,点D位于斜边AB上,容易证明△BCD是正三角形,△DAC是等腰三角形,从而得出上述结论.
做一做
在Rt△ABC中,∠C=90°,借助于你常用的两块三角尺,或直接通过计算,根据锐角三角函数定义,分别求出下列∠A的四个三角函数值:
(1) ∠A=30°;(2) ∠A=60°;(3) ∠A=45°.
为了便于记忆,我们把30°、45°、60°角的三角函数值列表如下:
α
sinα
cosα
tanα
cotα
30°
45°
1
1
60°
练习 求值: 2cos60°+2sin30°+4tan45°.
四、学习小结:记忆特殊角的函数值
五、布置作业 习题:1
第三课时
教学目标
1、进一步复习直角三角形中锐角三角函数值与三边之间的关系。
2、进一步掌握30°、45°、60°等特殊角的三角函数值。
3、掌握三角函数定义式:sin A=, cos A=,
tan A=, cot A=
教学重难点
重点:三角函数定义的理解。
难点:掌握三角函数定义式。
教学过程
例1 求出如图所示的Rt△DEC(∠E=90°)中∠D的四个三角函数值.
sin30゜是一个常数.用刻度尺量出你所用的含30゜的三角尺中,30゜所对的直角边与斜边的长,sin30゜=
即斜边等于对边的2倍.因此我们还可以得到:
在直角三角形中,如果一个锐角等于30゜,那么它所对的直角边等于斜边的一半.
做一做
在Rt△ABC中,∠C=90゜,借助于你常用的两块三角尺,根据锐角三角函数定义求出∠A的四个三角函数值:
(1)∠A=30゜ (2)∠A=60゜ (3)∠A=45゜.
为了便于记忆,我们把30゜、45゜、60゜的三角函数值列表如下.(请填出空白处的值)
课堂练习
1. 如图,在Rt△MNP中,∠N=90゜.
∠P的对边是__________,∠P的邻边是_______________;
∠M的对边是__________,∠M的邻边是_______________;
2. 求出如图所示的Rt△DEC(∠E=90゜)中∠D的四个三角函数值.
3. 设Rt△ABC中,∠C=90゜,∠A、∠B、∠C的对边分别为a、b、c,根据下列所给条件求∠B的四个三角函数值.
(1)a=3,b=4; (2)a=6,c=10.
4. 求值:2cos60゜+2sin30゜+4tan45゜.
学习小结: 记忆特殊角的函数值
布置作业
习题:练习册习题:2
更多精彩内容请点击: 2018威廉希尔决赛赔率 > 初三 > 数学 > 初三数学教案
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。