锐角三角函数教案

编辑:haiyangcms

2013-06-13

教学目标

1、正弦、余弦、正切、余切的定义。

2、正弦、余弦、正切、余切的应用

教学重难点

重点:正弦、余弦、正切、余切。

难点:正弦、余弦、正切、余切的应用。

教学过程

第一节.锐角三角函数

在§25.1中,我们曾经使用两种方法求出操场旗杆的高度,其中都出现了两个相似的直角三角形,即

△ABC∽△A′B′C′.

按的比例,就一定有

就是它们的相似比.

当然也有.

我们已经知道,直角三角形ABC可以简记为Rt△ABC,直角∠C所对的边AB称为斜边,用c表示,另两条直角边分别为∠A的对边与邻边,用a、b表示(如图25.2.1).

前面的结论告诉我们,在Rt△ABC中,只要一个锐角的大小不变(如∠A=34°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.

思考

一般情况下,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还会是一个固定值吗?

观察图25.2.2中的Rt△、Rt△和Rt△,易知

Rt△∽Rt△_________∽Rt△________,

所以=_________=____________.

可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.

我们同样可以发现,对于锐角A的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是唯一确定的.

因此这几个比值都是锐角A的函数,记作sinA、cosA、tanA、cotA,即

sinA=,cosA=,

tanA=,cotA=.

分别叫做锐角∠A的正弦、余弦、正切、余切,统称为锐角∠A的三角函数.

显然,锐角三角函数值都是正实数,并且

0

根据三角函数的定义,我们还可得出

=1,

tanA·cotA=1.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。