用三种方式表示二次函数教学设计

编辑:haiyangcms

2013-06-13

学习目标:

经历三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系和各自不同点;掌握变量之间的二次函数关系,解决二次函数所表示的问题;掌握根据二次函数不同的表达方式,从不同的侧面对函数性质进行研究.

学习重点:

能够根据二次函数的不同表示方式,从不同的侧面对函数进行研究.函数的综合题目,往往是三种方式的综合应用,由三种不同方式,都能把握函数性质,才会正确解题.

学习难点:

用三种方式表示二次函数的实际问题时,忽略自变量的取值范围是常见的错误.

学习方法:

讨论式学习法。

学习过程:

一、做一做:

已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2,y随x的而变化的规律是什么?你能分别用函数表达式,表格和图象表示出来吗?比较三种表示方式,你能得出什么结论?与同伴交流.

二、试一试:

两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的? ?用你能分别用函数表达式,表格和图象表示这种变化吗?

三、积累:

表示方法

优点

缺点

解析法

表格法

图像法

三者关系

【例1】已知函数y=x2+bx+1的图象经过点(3,2).

(1)求这个函数的表达式;

(2)画出它的图象,并指出图象的顶点坐标;

(3)当x>0时,求使y≥2的x的取值范围.

【例2】  一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.

(1)求二次函数的表达式;

(2)在同一坐标系中画出两个函数的图象;

(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大.

(4)当x为何值时,一次函数值大于二次函数值?

【例3】  行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑动一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过130km/h),对这种汽车进行测试,测得数据如下表:

刹车时车速(km/h)

0

10

20

30

40

50

60

70

刹车距离(m)

0

1.1

2.4

3.9

5.6

7.5

9.6

11.9

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。