编辑:
2013-06-12
11、观察下列数表:
根据数表所反映的规律,猜想第6行与第6列的交叉点上的数应为________,第n行与第n列交叉点上的数应为_________(用含有n的代数式表示,n为正整数)
解:11;2n-1 点拨:由已知的四个特例即可得到第n行与第n列交叉点上的数满足2n—1.
12、观察下列各等式:
(1)以上各等式都有一个共同的特征:某两个实数的一等于这两个实数的___________;如果等号左边的第一个实数用x表示,第二个实数用y表示,那么这些等式的共同特征可用含x,y的等式表示为_
____________________.
(2)将以上等式变形,用含y的代数式表示x为_________________;
(3)请你再找出一组满足以上特征的两个实数,并写出等式形式:__________________
解:
⑴差;商;x-y= (y≠0,且y=1)
⑵x=
⑶如:
专题三:整式
一、中考要求:
1、经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感.
2、经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力.
3、了解整数指数幂的意义和正整数指数幂的运算性质;了解整式产生的背景和整式的概念,会进行简单的整式加、减、乘、除运算(其中多项式相乘仅限于一次式相乘,整式的除法只要求到多项式除以单项式且结果是整式).
4、会推导乘法公式:(a+b)(a-b)=a2+b2,(a±b)2=a2±2ab+b2,了解公式的几何背景,并能进行简单的计算.
5、在解决问题的过程中了解数学的价值,发展“用数学”的信心.
二、知识要点:
1、幂的意义:几个相同数的乘法
2、幂的运算性质:(1)am·an= am+n
(2)(am)n= amn;(3)(ab)n= anbn;
(4)am÷an= am-n(a≠0,a,n均为正整数)
3、特别规定:(1)a0=1(a≠0);
(2)a-p=
4、幂的大小比较的常用方法:
⑴求差比较法:如比较 的大小,可通过求差 <0可知.
⑵求商比较法:如 =
⑶乘方比较法:如a3=2,b3=3,比较a、b大小可算 a15=(a3)5= 25=32,b15=(b5)3=33=2 7,可得a15>b15,即a>b.
⑷底数比较法:就是把所比较的幂的指数化为相同的数,然后通过比较底数的大小得出结果.
⑸指数比较法:就是把所比较的幂的底数化为相同的数,然后通过比较指数的大小,得出结果.
5、单项式:都是数与字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.
6、多项式:几个单项式的和叫做多项式.
7、整式:单项式和多项式统称整式..
8、单项式的欢数:一个单项式中,所有字母的指数和叫做这个单项式的次数.
9、多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
10、添括号法则:添括号后,括号前是“+”号,插到括号里的各项的符号都不变;括号前是“-”号,括到括号里的各项的符号都改变.
11、单项式乘以单项式的法则:单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
12、单项式乘以多项式的法则:单项式与多项式相乘,就是根据分配律,用单项式去乘多项式的每一项,再把所得的积相加.
13、多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
14、单项式除以单项式的法则:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为
商的一个因式.
15、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
16、整式乘法的常见错误:(1)漏乘如(在最后的结果中漏乘字母c.
(2)结果书写不规范在书写代数式时,项的系数不能用带分数表示,若有带分数一律要化成假分数或小数形式.
(3)忽略混合运算中的运算顺序整式的混合运算与有理数的混合运算相同,“有乘方,先算乘方,再算乘除,最后算加减:如果有括号,先算括号里面的.”
(4) 运算结果不是最简形式运算结果中有同类项时,要合并同类项,化成最简形式.
(5) 忽略符号而致错在运算过程中和计算结果中最容易忽略“一”号而致错.
17、乘法公式:平方差公式(a+b)(a-b)=a2+b2,,,完全平方公式:(a±b)2=a2±2ab+b2
18、平方差公式的语言叙述:两个数的和与这两个数的差的积等于这两个数的平方差.’
19、平方差公式的结构特征:等号左边一般是两个二项式相乘,并且这两个二项式中有一项是完全相同,另一项互为相反项问系数互为相反数,其他因数相同人与这项在因式中的位置无关.等号右边是乘积中两项的平方差,即相同项的平方减去相反项的平方.
20、运用平方差公式应注意的问题:(1)公式中的a和b可以表示单项式,也可以是多项式;(2)有些多项式相乘,表面上不能用公式,但通过适当变形后可以用公式.如(a+b-c)(b -a+c)=[(b+a)-c]][b-(a-c)]=b2 -(a-c)
21、完全平方式的语言叙述:(1)两数和(差)的平方等于它们的平方和加上它们乘积的2倍.字母表示为:(a±b)2=a2±2ab+b2;
22、运用完全平方公式应注意的问题:(1)公式中的字母具有一般性,它可以表示单项式、多项式,只要符合公式的结构特征,就可以用公式计算;(2)在利用此公式进行计算时,不要丢掉中间项“2ab”或漏了乘积项中的系数积的“ 2”倍;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.
三、经典例题剖析:
1、计算(-3a3)2:a2的结果是( )
A.-9a2 B 6a2 C 9a2 D 9a4
2、下列计算正确的是( )
A. C.
3、已知a=8131,b=2741,c=961,则a、b、c的大小关系
是( )
A.a>b>c B.a>c>b C.a
4、计算(2+1)(22 +1)(23+1)…(22n +1)的值是( )
A、42n -1 B、 C、2n -1 D、22n -1
5、三个连续奇数,若中间一个为n,则这三个连续奇数之积为( )
A.4n2-n B. n2-4n C.8n2-8a D.8n2-2n
6、计算:x2x3=_______; 0.299×5101=________;
-m3·(-m4)·(-m)=_________ ; (a-2 b)(a+2 b)=________.
7、已知代数式2x2+3x+7的值是8,则代数式4x2 + 6x+ 200=___________
8、已知x2+y2=25,x+y=7,且x>y,x-y的值等于________.
9、若x2-2x+y2+6y+10=0.则x=_________,y= 。
10、一种电子计算机每秒可作8 ×108次运算,它工作 6×102秒可作多少次运算?(结果用科学记数法表示)
11、已知3m ·9m·27m·81m=330,求m的值.
12、证明代数式16+a -{8a-[a-9-(3-6a)]}的值与a的取值无关.
13、试求不等式(3x+4)(3x-4)≥9(x-2)(x+3)的负整数解.
14、已知x2+y2=25,x+y=7,且x>y,x-y的值等于________.
解:本题考查了对完全平方公式(a±b)2=a2±2ab+b2的灵活运用.由(x+y)2=x2+2xy+y2,可得xy=12.所以(x-y)2=25-24=1.又因为x>y,所以x—y>0.所以x—y=1
15、阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:(2a+b)(a+b)=2a2+3ab+ b2就可以用图l-l-l或图l-l-2等图形的面积表示.
(1)请写出图l-1-3所表示的代数恒等式:
(2)试画出一个几何图形,使它的面积能表示:
(a+b)(a+3b)=a2+4ab十3b2.
(3)请仿照上述方法另写一下个含有a、b的代数恒等式,并画出与之对应的几何图形.
解:(l)(2a+b)(a+2b)=2a2+5ab +2b2
(2)如图l-1-4(只要几何图形符合题目要即可).
(3)按题目要求写出一个与上述不同的代数恒等式,画出与所写代数恒等生对应的平面几何图形即可(答案不唯一).
点拨:本题是一道阅读理解题,是中考的热点题型.
专题四:分解因式
一、中考要求:
1.经历探索分解因式方法的过程,体会数学知识之间的整体联系(整式乘法与分解因式).
2.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).
3、通过乘法公式 ,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力.
二、知识要点:
1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
⑵运用公式法:公式 ;
3.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项“ 1”易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。