初三数学解直角三形应用举例教案

编辑:sx_fuxh

2013-04-15

1.知识结构:

2.重点和难点分析

重点和难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

3.教法建议

本节知识与实际联系密切,这些知识可以直接用来解决一些实际问题,这在几何的许多章节中是做不到的,所以要充分发挥这一特点,通过教学,培养学生应用数学的意识,解决实际问题的能力.要解决实际问题,首先要能够把实际问题抽象为数学问题,然后运用数学知识解决这些问题,为了使学生能够处理一些简单问题,教材中配备一些比较典型的例题,这些例题的教学,要注意以下几个问题:

1.帮助学生弄清实际问题的意义.由于学生接触实际较少,实践经验不足,许多实际问题的意义不清楚,许多术语不熟悉,这些在教学中要向学生说明.例如测量中的仰角、俯角、视线、铅垂线等等,零件图,特别是剖面图的意义,航行中的方位角等.学生懂得了这些常识,才能理解实际问题.

2.帮助学生画出草图.把实际问题抽象为几何问题,关键是画出草图,通过图形反映问题中的已知与未知,以及已知和未知量之间的关系.这里要解决好两个问题:

(1)实际问题基本上是空间三维的问题,要会把它转化为平面问题,画出平面图形.例如飞机在空中俯看地面目标,选取经过飞机、地面目标的垂直于地平面的平面(图1);机器零件大都画出横断面、纵断面(图2);在地面上测两点距离,两个方向夹角,可以画平行地面的平面等.

(2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,这类问题难点在于确定基准点.例如,说灯塔在船的什么方向上,这时船是基准点,如果说船在岸边某一点的什么方向上,这时岸边的这一点是基准点.有时因为船在航行中观测灯塔,基准点在转移,这些都会给画图增加困难.

在第一册里,介绍过空间里的平行、垂直关系,也介绍过方向角的概念,这些都可以作为学习的基础,教学时可适当复习,帮助学生回忆.

3.帮助学生根据需要作出辅助线.画出的草图,不一定有直角三角形,为了用解直角三角形的方法解决这些问题,常常需要添加辅助线.在这些问题中,辅助线常常是垂线或者平行线,例如图3中的几个问题中,虚线就是所要添加的辅助线.

4.有了直角三角形,还要进一步分析,由题目的条件可以知道直角三角形的哪些边或角,题目要求的是哪些边或角,这样才可以用解直角三角形的方法解决这些实际问题.

一、教学目标

1.使学生了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题,会把实际问题转化为数学问题来解决;

2.通过本节的教学,进一步把形和数结合起来,提高学生分析问题、解决实际问题的能力;

3.通过本节的教学,向学生渗透数学来源于实践又反过来作用于实践的观点,培养他们用数学的意识.

二、重点·难点·疑点及解决办法

1. 重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.

3.疑点:练习中水位为+2.63这一条件学生可能不理解,教师最好用实际教具加以说明.

4.解决办法:引导学生体会实际问题中的概念,建立数学模型,从而重难点,以教具演示解决疑点.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。