初三数学圆内接四边形 教学实录

编辑:sx_fuxh

2013-04-15

【摘要】“初三数学圆内接四边形 教学实录”教师通过讲述本课可以带领学生复习圆内接三角形和三角形的外接圆的概念。

一、教学目标:

掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。

二、教学重点和难点:

重点:圆内接四边形的性质定理。

难点:圆内接四边形性质定理的准确、灵活应用。

三、教学过程:

1、带领学生复习圆内接三角形和三角形的外接圆的概念。

2、利用几何画板:

①②(1)探索:点D在⊙O上(和A、C不重合)移动,试讨论∠D和∠B的大小关系?

(学生对第一种情况比较熟悉,但对于第二种情况做适当的提示:利用几何画板把D点在圆上移动!)

通过学生的思维,可归纳出∠D和∠B的大小关系是互补。

利用此时的几何图形,由学生模仿圆内接三角形的定义得到圆内接四边形的概念并用电脑加以显示。立即让学生利用给出的圆内接四边形的定义把刚才的结论重新归纳,从而得到定理:

圆内接四边形的对角互补。(书写符号语言)

(2)对定理进行巩固

①四边形ABCD为⊙O的内接四边形,

已知∠BOD=140°,则∠BAD= °∠BCD= °

②已知AB是圆O的直径,∠BAC=40°,D是弧AB上的任意一点,那么∠D的度数是°

(3)外角的引入

紧接着前面的练习,和学生共同研究探索题:

(对于上面的探究性应用题,针对不同层次的学生都可以得到一定的发挥)

当学生最后得到∠E的度数后,立即提问:

从∠A= 70°到求出∠E=110°,在整个过程中,哪个角起了关键的作用?从而把学生的注意力转向外角∠DCF(目的是让学生明白学习定理的原因)并且引导学生讨论∠DCF和∠A的大小关系?从而得到∠DCF=∠A的结论。利用几何画板的优势,隐藏⊙O2和线段DE、EF得到外角的基本图形

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。