八年级下数学数据的离散程度同步训练题(华师大版含答案)

编辑:

2016-03-09

14.已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为 9 .

考点: 方差;中位数.

专题: 计算题.

分析: 由于有6个数,则把数据由小到大排列时,中间有两个数中有1,而数据的中位数为1,所以中间两个数的另一个数也为1,即x=1,再计算数据的平均数,然后利用方差公式求解.

解答: 解:∵数据﹣3,x,﹣2,3,1,6的中位数为1,

∴ =1,

解得x=1,

∴数据的平均数= (﹣3﹣2+1+1+3+6)=1,

∴方差= [(﹣3﹣1)2+(﹣2﹣1)2+(1﹣1)2+(1﹣1)2+(3﹣1)2+(6﹣1)2]=9.

故答案为:9.

点评: 本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2= [(x1﹣ )2+(x2﹣ )2+…+(xn﹣ )2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.

三.解答题(共7小题)

15.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

甲 7 8 9 7 10 10 9 10 10 10

乙 10 8 7 9 8 10 10 9 10 9

(1)甲队成绩的中位数是 9.5 分,乙队成绩的众数是 10 分;

(2)计算乙队的平均成绩和方差;

(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是 乙 队.

考点: 方差;加权平均数;中位数;众数.

专题: 计算题;图表型.

分析: (1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;

(2)先求出乙队的平均成绩,再根据方差公式进行计算;

(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.

解答: 解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),

则中位数是9.5分;

乙队成绩中10出现了4次,出现的次数最多,

则乙队成绩的众数是10分;

故答案为:9.5,10;

(2)乙队的平均成绩是: (10×4+8×2+7+9×3)=9,

则方差是: [4×(10﹣9)2+2× (8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;

(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,

∴成绩较为整齐的是乙队;

故答案为:乙.

点评: 本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1﹣ )2+(x2﹣ )2+…+(xn﹣ )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.

16.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表(表1)和扇形统计图如下:

命中环数 10 9 8 7

命中次数  4  3 2  1

(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;

(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.

考点: 方差;统计表;扇形统计图.

分析: (1)根据统计表(图)中提供的信息,可列式得命中环数是7环的次数是10×10%,10环的次数是10﹣3﹣2﹣1,再分别求出命中环数是8环和10环的圆心角度数画图即可,

(2)先求出甲运动员10次射击的平均成绩和方差,再与乙比较即可.

解答: 解:(1)命中环数是7环的次数是10×10%=1(次),10环的次数是10﹣3﹣2﹣1=4(次),

命中环数是8环的圆心角度数是;360°× =72°,10环的圆心角度数是;360°× =144°,

画图如下:

故答案为:4,1;

(2)∵甲运动员10次射击的平均成绩为(10×4+9×3+8×2+7×1)÷10=9环,

∴甲运动员10次射击的方差= [(10﹣9)2×4+(9﹣9)2×3+(8﹣9)2×2+(7﹣9)2]=1,

∵乙运动员10次射击的平均成绩为9环,方差为1.2,大于甲的方差,

∴如果只能选一人参加比赛,认为应该派甲去.

点评: 本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1﹣ )2+(x2﹣ )2+…+(x n﹣ )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。