初二年级下册数学勾股定理同步检测题练习

编辑:sx_jixia

2016-03-02

我们经常听见这样的问题:你的数学怎么那么好啊?教教我诀窍吧?其实学习这门课没有什么窍门。只要你多练习总会有收获的,希望这篇勾股定理同步检测题练习,能够帮助到您!

1. 如图字母B所代表的正方形的面积是 (     )

A. 12      B. 13       C. 144       D. 194

2.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为(     ).

A.2m  B.2.5cm  C.2.25m  D.3m

3.△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是(   )

A.42      B.32     C.42或32     D.37或33

4、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为(  )

A、5   B、25  C、7   D、15

5. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 (    )  A. ab=h2   B. a+b=2h    C. +=  D. +=

6.已知,如图,在矩形ABCD中,P是边AD上的动点,    于E,于F,如果AB=3,AD=4,那么(   )

A.;    B. <<;

C.       D. <<

7.(1)在Rt△ABC中,∠C=90°.

①若AB=41,AC=9,则BC=_______;

②若AC=1.5,BC=2,则AB=______,△ABC的面积为________.

8.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上,小虎应把梯子的底端放在距离墙________米处.

9.在△ABC中,∠C=900,,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA-AB-BC的路径再回到C点,需要______分的时间.

10.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是_________

11(荆门).已知直角三角形两边x、y的长满足|x2-4|+=0,则第三边长为______.

12.如图7所示,Rt△ABC中,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,你能求出PP′的长吗?

13.如图4为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?

14.如图2,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.

15.如图,每个小方格的边长都为1.求图中格点四边形ABCD的面积.

16.如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?

17.4个全等的直角三角形的直角边分别为a、b,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.

18. 如图3,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?

19.《中华人民共和国道路交通安全法》规定:小汽车在城市街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m.这辆小汽车超速了吗?

20.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?

21.有一块三角形的花圃ABC,现可直接测得∠A=30,AC=40m,BC=25m,请你求出这块花圃的面积.

22.如图所示,△ABC中,∠ACB=90°,CD⊥AB于D,且AB+BC=18cm,若要求出CD和AC的长,还需要添加什么条件?

23.四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第二个正方形AEGH,如此下去…….

⑴记正方形ABCD的边长为,按上述方法所作的正方形的边长依次为,请求出的值;

⑵根据 以上规律写出的表达式.

24.已知:如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC长为 p,BBl是∠ABC的平分线交AC于点B1,过B1作B1B2⊥AB于点B2,过B2作B2B3∥BC交AC于点B3,过B3作B3B4⊥AB于点B4,过B4作B4B5∥BC交AC于点B5,过B5作B5 B6⊥AB于点B6,…,无限重复以上操作.设b0=BBl,b1=B1B2,b2=B2B3,b3=B3B4,b4=B4B5,…,bn=BnBn+1,….

(1)求b0,b3的长;

(2)求bn的表达式(用含p与n的式子表示,其中n是正整数)

25、已知:在Rt△ABC中,∠C=900,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.

⑴填表:

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。