编辑:sx_jixia
2015-09-01
初中的学习至关重要,广大小学生朋友们一定要掌握科学的学习方法,提高学习效率。以下是威廉希尔app 初中频道为大家提供的初二数学上册单元检测题,供大家复习时使用!
一、选择题(每小题3分,共30分)
1.下列语句是命题的是( )
A.作直线AB的垂线 B.在线段AB上取点C
C.同旁内角互补 D.垂线段最短吗?
2.如图,∠BAC=90°,AD⊥BC,则图中互余的角有( )
A.2对 B.3对 C.4对 D.5对
3.下列各组长度的线段能构成三角形的是( )
A.1.5 cm,3.9 cm,2.3 cm B.3.5 cm,7.1 cm,3.6 cm
C.6 cm,1 cm,6 cm D.4 cm,10 cm,4 cm
4.如图,AC与BD相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有( )
A. 1对 B. 2对 C. 3对 D. 4对
5.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB为( )
A. 80° B. 72° C. 48° D. 36°
6.如图,三条直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A. 一处 B. 两处 C. 三处 D. 四处
7. 如图,∠1=∠2,∠C=∠B,下列结论中不正确的是( )
A. △DAB≌△DAC B. △DEA≌△DFA C. CD=DE D. ∠AED=∠AFD
8. 如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是( )
A. 180° B.360° C.540° D.720°
9.下列命题中,属于假命题的是( )
A.若a-b=0,则a=b=0 B.若a-b>0,则a>b
C.若a-b<0,则a
10.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE的是( )
A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE
二、填空题(每小题3分,共18分)
11. 把命题“三角形内角和等于180°”改写成如果 ,那么 .
12.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC= ,∠BOC= .
13.如图,在△ABC中,AB=2 012,AC=2 010,AD为中线,则△ABD与△ACD的周长之差= .
14.在Rt△ABC中,一个锐角为25°, 则另一个锐角为________.
15.如图,在△ABC中,DE是AC的中垂线,AD=5,BD=2,则BC长是 .
16.如图,在矩形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点D恰落在BC上的点N处,则∠ANB+∠MNC=____________.
三、解答题(共52分)
17.(6分)如图,CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由:
解:∵ CD是线段AB的垂直平分线( ),
∴AC= , =BD( ).
在 和 中,
=BC,
AD= ,
CD= ( ),
∴ ≌ ( ).
∴ ∠CAD=∠CBD( ).
18.(6分)如图,在△ABC中,∠B=42o,∠C=72 o,AD是△ABC的角平分线,
①∠BAC等于多少度?简要说明理由.
②∠ADC等于多少度?简要说明理由.
19.(6分)如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2 cm,BD=3 cm,求线段BC的长.
20.(6分)如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
21.(7分).如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A= 时,求∠BPC的度数.
22.(6分)如图,AD⊥BD,AE平分∠BAC, ∠B=30°,∠ACD=70°,求∠AED的度数.
23.(7分)如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3, AC=AE,试说明:△ABC≌△ADE.
24.(8分)某产品的商标如图所示,O是线段AC、DB的交点,且AC=BD,AB=DC,小林认为图中的两个三角形全等,他的思考过程是:
∵ AC=DB,∠AOB=∠DOC,AB=AC,
∴ △ABO≌△DCO.
你认为小林的思考过程对吗?
如果正确,指出他用的是判别三角形全等的哪个方法;
如果不正确,写出你的思考过程。
标签:数学同步练习
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。