编辑:
2016-10-08
25.如图,△ABC是等边三角形,AB=2cm,动点P、Q分别从点A、C同时出发,运动速度均为1cm/s,点P从点A出发,沿A→B运动,到点B停止,点Q从点C出发,沿C→A运动,到点A停止,连接BQ、CP相交于点D,设点P的运动时间为x(s).
(1)AP= x (用含x的式子表示);
(2)求证:△ACP≌△CBQ;
(3)求∠PDB的度数;
(4)当CP⊥AB时,直接写出x的值.
【分析】(1)根据点P的运动时间为x( s),运动速度均为1cm/s,得到AP=x;
(2)利用SAS证明△ACP≌△CBQ;
(3)由△ACP≌△CBQ,得到∠ACP=∠QCB,利用外角的性质∠PDB=∠DBC+∠DCB,即可解答;
(4)当CP⊥AB时,则点P为AB的中点,所以AP= AB=1cm,则x=1.
【解答】解:(1)∵点P的运动时间为x(s),运动速度均为1cm/s,
∴AP=x,
故答案为:x.
(2)∵动点P、Q分别从点A、C同时出发,运动速度均为1cm/s,点P从点A出发,沿A→B运动,到点B停止,点Q从点C出发,沿C→A运动,到点A停止,
∴AP=CQ,
∵△ABC是等边三角形,
∴AC=CB,∠A=∠ACB=60°,
在△ACP 和△CBQ中,
,
∴△ACP≌△CBQ.
(3)∵△ACP≌△CBQ,
∴∠ACP=∠QCB,
∵∠PDB=∠DBC+∠DCB,
∴∠PDB=∠DCB+∠ACP=∠ACB=60°.
(4)当CP⊥AB时,则点P为AB的中点,
∴AP= AB=1cm,
∴x=1.
26.在通常的日历牌上,可以看到一些数所满足的规律,表①是2015年9月份的日历牌.
(1)在表①中,我们选择用如表②那样2×2的正方形框任意圈出2×2个数,将它们线交叉相乘,再相减,如:用正方形框圈出4、5、11、12四个数,然后将它们交叉相乘,再相减,即4×12﹣5×11=﹣7或5×11﹣4×12=7,请你用表②的正方形框任意圈出2×2个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可);
(2)在用表②的正方形框任意圈出2×2个数中,将它们先交叉相乘,再相减,若设左上角的数字为n,用含n的式子表示其他三个位置的数字,列出算式并算出结果(选择其中一个算式即可);
(3)若选择用如表③那样3×3的正方形方框任意圈出3×3个数,将正方形方框四个角位置上的4个数先交叉相乘,再相减,你发现了什么?请说明理由.
【分析】(1)先画出各个数,再求出即可;
(2)表示出其余的数,列出算式,求出即可;
(3)圈出各个数,列出算式,求出即可;设左上角的数为m,则其它三个位置的数分别为n+14,n+2,n+16,列出算式,求出即可.
【解答】解:(1)如图所示:
1×9﹣2×8=﹣7;
(2)其它三个数为n+1,n+7,n+8,
n(n+8)﹣(n+1)(n+7)
=n2+8n﹣n2﹣8n﹣7
=﹣7;
(3)3×19﹣5×17=﹣28,
5×17﹣3×19=28,
发现:它们最后的结果是28或﹣28,
理由是:设左上角的数为m,则其它三个位置的数分别为n+14,n+2,n +16,
则n•(m+16)﹣(n+14)•(n+2)
=n2+16n﹣n2﹣16n﹣28
=﹣28;
(n+14)•(n+2)﹣n•(n+16)
=28;
结论:它们的结果与n的取值无关,最终结果保持不变,是28或﹣28.
威廉希尔app 为大家推荐的2016年八年级数学上册月考试卷,大家一定要仔细阅读哦,祝大家学习进步。
相关推荐:
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。