编辑:
2016-10-21
∴BC=CD+BD=1+2=3.
故选C.
【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.
4.如图,在边长为 的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )
A. B. C. D.1
【考点】角平分线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理.
【分析】根据△ABC为等边三角形,BP平分∠ABC,得到∠PBC=30°,利用PC⊥BC,所以∠PCB=90°,在Rt△PCB中, =1,即可解答.
【解答】解:∵△ABC为等边三角形,BP平分∠ABC,
∴∠PBC= =30°,
∵PC⊥BC,
∴∠PCB=90°,
在Rt△PCB中, =1,
∴点P到边AB所在直线的距离为1,
故选:D.
【点评】本题考查了等边三角形的性质、角平分线的性质、利用三角函数求值,解决本题的关键是等边三角形的性质.
5.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )
A.6 B.5 C.4 D.3
【考点】角平分线的性质.
【分析】过点P作PE⊥OB于点E,根据角平分线上的点到角的两边的距离相等可得PE=PD,从而得解.
【解答】解:如图,
过点P作PE⊥OB于点E,
∵OC是∠AOB的平分线,PD⊥OA于D,
∴PE=PD,
∵PD=6,
∴PE=6,
即点P到OB的距离是6.
故选:A.
【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.
6.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A.2 B. C. D.
【考点】角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
【解答】解:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。