编辑:
2015-10-29
4.如果a、b、c是一个直角三角形的三边,则a:b:c等于( )
A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13
考点:勾股定理.
专题:计算题.
分析:将四个选项的数字按照勾股定理进行计算,符合a2+b2=c2的即为正确答案.
解答: 解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;
B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;
C、∵32+42≠72 ,∴3:4:7不是直角三角形的三条边;故本选项错误;
D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.
故选D.
点评:本题考查了勾股定理,符合a2+b2=c2的三条边才能构成直角三角形.
5.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )
A.40° B.35° C.25° D.20°
考点:等腰三角形的性质.
分析:先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.
解答: 解:∵△ABC中,AC=AD,∠DAC=80°,
∴∠ADC= =50°,
∵AD=BD,∠ADC=∠B+∠BAD=50°,
∴∠B=∠BAD=( )°=25°.
故选C.
点评:此题比较简单,考查的是等腰三角形的性质及三角形内角和定理.
6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于( )
A.4 B.3 C.2 D.1
考点:菱形的判定与性质;含30度角的直角三角形.
专题:几何图形问题.
分析:过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.
解答: 解:如图:过点P做PM∥CO交AO于M,PM∥CO
∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA
∴四边形COM P为菱形,PM=4
PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,
又∵PD⊥OA
∴PD= PC=2.
令解:作CN⊥OA.
∴CN= OC=2,
又∵∠CNO=∠PDO,
∴CN∥PD,
∵PC∥OD,
∴四边形CNDP是长方形,
∴PD=CN=2
故选:C.
点评:本题运用了平行线和直角三角形的性质,并且需通过辅助线求解,难度中等偏上.
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。