2015-2016八年级数学上册期中考试测试卷

编辑:

2015-10-27

16.(2005•绵阳)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是 5 cm.

考点: 等腰三角形的判定与性质;平行线的性质.

分析: 分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为5cm.

解答: 解:∵BP、CP分别是∠ABC和∠ACB的角平分线,

∴∠ABP=∠PBD,∠ACP=∠PCE,

∵PD∥AB,PE∥AC,

∴∠ABP=∠BPD,∠ACP=∠CPE,

∴∠PBD=∠BPD,∠PCE=∠CPE,

∴BD=PD,CE=PE,

∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm.

故答案为:5.

点评: 此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.

17.(2014秋•东胜区校级期中)如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有 6 个.

考点: 等腰三角形的判定.

分析: 根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.

解答: 解:如图,

①AB的垂直平分线交AC一点P1(PA=PB),交直线BC于点P2;

②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);

③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).

故符合条件的点有6个.

故答案为:6.

点评: 本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.

18.(2011•鄂州模拟)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是 6 .

考点: 等边三角形的性质;旋转的性质.

专题: 计算题.

分析: 根据∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO≌△COD,进而可以证明AP=CO,即可解题.

解答: 解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,

∴∠APO=∠COD,

在△APO和△COD中,

∴△APO≌△COD(AAS),

即AP=CO,

∵CO=AC﹣AO=6,

∴AP=6.

故答案为6.

点评: 本题考查了等边三角形各内角为60°的性质,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△APO≌△COD是解题的关键.

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。