编辑:
2013-06-29
三、阅读课文P167页例一,尝试分析解答下面例题。
[例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的
一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.
[师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.
[生]没有画图象.
[师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?
[生]因为题中已告诉是一次函数.
[师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.
[生]解:设y=kx+b,根据题意,得
15=k+b, ①
16=3k+b. ②
由①得b=15-k
由②得b=16-3k
∴15-k=16-3k
即k=0.5
把k=0.5代入①,得k=14.5
所以在弹性限度内.
y=0.5x+14.5
当x=4时
y=0.5×4+14.5=16.5(厘米)
即物体的质量为4千克时,弹簧长度为16.5厘米.
[师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.
[生]它们的相同步骤是第二步到第四步.
求函数表达式的步骤有:
1.设函数表达式.
2.根据已知条件列出有关方程.
3.解方程.
4.把求出的k,b值代回到表达式中即可.
四.课堂练习
(一)随堂练习P168页
(题目见教材)
解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)
(题目见教材)
解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。
五.课时小结
本节课我们主要学习了根据已知条件,如何求函数的表达式.
其步骤如下:
1.设函数表达式;
2.根据已知条件列出有关k,b的方程;
3.解方程,求k,b;
4.把k,b代回表达式中,写出表达式.
六、布置作业:P169页1、2
更多精彩推荐: 2018威廉希尔决赛赔率 > 初二 > 数学 > 初二数学教案
标签:初二数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。