初中奥数函数知识点:求函数解析式的几种常用方法

编辑:sx_bilj

2014-09-11

奥数的学习并没有我们想象的那么难,只要用心我们还是可以把奥数学习好的。我们一起来看一下这篇初中奥数函数知识点:求函数解析式的几种常用方法吧。

[题型一]配凑法

例1.已知f(■+1)=x+2■,求f(x)。

分析:函数的解析式y=f(x)是自变量x确定y值的关系式,其实质是对应法则f:x→y,因此解决这类问题的关键是弄清对“x”而言,“y”是怎样的规律。

解:∵f(■+1)=x+2■=(■+1)2-1

(■+11)

∴f(x)=x2-1(x1)

小结:此种解法为配凑法,通过观察、分析,将右端“x+2■”变为接受对象“■+1”的表达式,即变为含(■+1)的表达式,这种解法对变形能力、观察能力有一定的要求。

[题型二]换元法

例2.已知f(1-cosx)=sin2x,求f(x)。

分析:视1-cosx为一整体,应用数学的整体化思想,换元即得。

解:设t=1-cosx

∵-1cosx1 ∴01-cosx2 即0t2

∴cosx=1-t

∴sin2x=1-cos2x=1-(1-t)2=-t2+2t

∴f(t)=-t2+2t(0t2)

即f(x)=-x2+2x(0x2)

小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x替换t,便得f(x)的解析式。

注意:换元后要确定新元t的取值范围。

②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。

[题型三]待定系数法

例3.设二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析式。

分析:由于f(x)是二次函数,其解析式的基本结构已定,可用待定系数法处理。

解:设f(x)=ax2+bx+c(a≠0)

由f(x+2)=f(2-x)可知,该函数图象关于直线x=2对称

∴-■=2,即b=-4a……①

又图象过点(0,3) ∴c=3……②

由方程f(x)=0的两实根平方和为10,得(-■)2-■=0

即b2-2ac=10a2……③

由①②③解得a=1,b=-4,c=3

∴f(x)=x2-4x+3

标签:函数

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。