您当前所在位置:首页 > 考研 > 考研辅导 > 数学

2015年考研高等数学必考题型

编辑:sx_zhangby

2014-11-26

考研高等数学虽然复习难度大,但并不是没有高效复习方法,分析历年的考题,我们可以看出高等数学的出题有一定的规律。以下是为您提供的考研高等数学必考题型,希望在您的复习备考过程中助您一臂之力!

2015年考研高等数学必考题型

1.求极限

无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!

2.利用中值定理证明等式或不等式,利用函数单调性证明不等式

证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。

标签:数学

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。