您当前所在位置:

人教版四年级数学下册教案(全册)

2013-03-01

乘法交换律和乘法结合律

(1)负责挖坑、种树的一共有多少人? (2)一共要浇多少桶水?

25×4=100(人) 4×25=100(人) (25×5)×2 25×(5×2)

25×4=4×25 =125×2 =10×25

┆(学生举例) =250(桶) =250(桶)

(25×5)×2=25×(5×2)

┆(学生举例)

交换两个因数的位置,积不变。 先乘前两个数,或者先乘后两个数,

这叫做乘法交换律。 积不变。这叫做乘法结合律。

a×b=b×a (a×b)×c=a×(b×c)

乘法交换律和乘法结合律练习课

教学目标:●能运用运算定律进行一些简便运算。●培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。●使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、基本练习

(1)口算:

50×2=100 50×20=1000

25×4=100 25×8=200 25×12=300 25×40=1000

125×8=1000 125×16=200

125×24=3000 125×80=10000

通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

板书:5×2 25×4 125×8

(2)在□里填上合适的数。

30×6×7=30×(□×□)

125×8×40=(□×□)×□

(3)计算:

43×25×4 25×43×4

比较两道题,在运用乘法运算定律时有什么不同?

在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。

小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

引导学生在对比中加以区分。

(4)师生比赛,看谁直接说出结果速度快。

25×42×4 68×125×8

4×39×25

(5)对比练习:

4×25+16×25

4×25×16×25

(25+15) ×4

(25×15)×4

46×25

(40+6)×25

49×49+49×51

49×99+49

(68+32)×5

68+32×5

学生小组分工后独立完成,再进行小组内交流。

汇报。

二、小结

学生谈收获。

乘法分配律

教学目的:●引导学生探究和理解乘法分配律。●培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。●使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:●乘法分配律的意义和应用。

教学难点:●乘法分配律的反应用。

教学过程:

一、铺垫孕埋伏

思考问题。

在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?

二、新授

小组讨论,尝试用不同的方法解决。

教师引导学生用多种方法解答。

学生汇报自己的解法。引导学生说明不同算法的理由。

(1)(4+2)×25

=6×25

=150(人)

4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。

(2)4×25+2×25

=100+50

=150(人)

4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。

小组合作:

(1)两组算式有什么相同点?

(2)两组算式有什么不同点?

(3)两组算式有什么联系?

汇报。

教师要根据学生的汇报,灵活地进行引导,总结出要点。

你还能举出像这样的几组算式吗?

学生举例。

根据学生举例板书。

到底我们举的例子是不是符合这样的规律呢?请学生验证。

请学生用语言表述出发现的规律。

板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

你有什么好方法帮助我们大家记住乘法分配律?

简记为:

和与一个数相乘=积相加

三、巩固练习

P36/做一做

P38/5

在练习小结中,帮助学生记忆乘法分配律。

四、小结

学生汇报自己的收获。

教师引导小结,相应完善板书。

板书设计:

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25 (2)4×25+2×25

=6×25 =100+50

=150(人) =150(人)

(4+2)×25=4×25+2×25

┆(学生举例)

(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个

数分别相乘,再相加。这叫做乘法分配律。

乘法分配律的应用

教学目的:●引导学生能运用乘法分配律进行一些简便运算。●培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。●使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、复习准备

出示:

1.口算:

73+27 138×100

100-64 64×1

8×9×125

(4+40)×25

2.在□里填上适当的数。

302=300+□

(300+2)×43=300×□+2×□

2003=2000+□

(2000+3)×14=2000×□+□×□

二、新授

我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。

出示102×( )

学生任意填上一个两位数。

老师迅速说出它的得数,而不用笔算。

出示:

计算102×43

小组讨论完成。

学生可能出现:

(1)(100+2)×43

(2)102×(40+3)

在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。

小练:

(1)在□里填上适当的数。

3001×84=□×84+□×84

92×203=92×(200+□)

=92×200+92×□

(2)计算102×24

出示:9×37+9×63

学生在练习本上独立完成。

(1)9×37+9×63

=333+567

=900

(2)9×37+9×63

=9×(37+63)

=9×100

=900

找出不同的方法,进行板演。

引导学生对比两种方法,重点理解、说明第二种方法。

小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。

在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。

另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。

小练:(80+8)×25

32×(200+3)

35×37+65×37

38×29+38

讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?

订正时,说明怎样运用运算定律简算的。

引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。

三、巩固练习

师生对出题。

我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。

2.根据乘法分配律把相等的算式用“=”连接起来。

23×12+23×88

(35+45)×12

(11×25)×4

25×(4+40)

讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改?

3.P38/5

四、小结

谈收获。

五、作业:P38/6—8

板书设计:

乘法分配律的应用

计算102×43 9×37+9×63 9×37+9×63 38×29+38

102×43 =333+567 =9×(37+63) =38×(29+1)

=(100+2)×43 =900 =9×100 =38×40

=100×43+2×43 =900 =1520

=4300+86

=4386

乘法运算定律的复习

教学目的:●引导学生能运用乘法运算定律进行一些简便运算。●培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。●使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、知识点的复习

回忆《乘法的运算定律》这一小节的学习内容。

教师引导回忆,并相应板书。

二、联系实际复习

1.学生汇报课前收集的有关乘法的运算定律的相应知识。

2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。

教师把符合要求的题目贴上黑板。

学生根据前面的知识点的复习,进行题目的独立解答。

要求:选择自己喜欢的方法解答。

教师巡视,加以必要的指导。

有必要的题目可以让学生练习画线段图。

小组内交流。

全班汇报。

三、小结

学生谈收获

减法性质、除法性质

教学目标:●知道从一个数里连续减去或除以两个数,可以改为减去两个数的和或除以两个数的积。●使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。●培养学生探索、研究数学的意识与能力。

教学重点:●引导学生探索和理解一个数连续减去或除以两个数,可以减去两个数的和或除以两个数的积。

教学难点:●学生自己探索一个数连续除以两个数,可以改为除以两个数的积。

教学过程:

一、情境引入

购物:

一个电脑桌497元,一种电脑椅203元,另一种电脑椅235元。带1035元买一张桌子和一把椅子,还剩多少钱?

学生自己选择条件,独立解答。

汇报:

(1)1035-235-497

1035-497-235

(2)1035-(497+235)

(1)1035-497-203

1035-203-497

(2)1035-(497+203)

二、新授

板书:

1035-235-497

1035-(497+235)

1035-497-203

1035-(497+203)

观察两组算式,你有什么发现?

你还能举出这样的几组算式吗?

教师板书。

学生发现规律,并相应进行语言描述,初步总结减法性质。

观察这几组算式,你有什么发现?

板书:从一个数里连续减去两个数,可以减去两个数的和 。

谁能试着用字母表示?板书:

a-b-c=a-(b+c)

小练:

(1)一本书一共有234页,我昨天看到第66页,今天又看了34页,还剩多少页没有看?

请学生用自己喜欢的方法解答。汇报时对比不同的解法,找出最优解法。

在其他的运算中是否也有这样的规律呢?

a+b+c= a+(b-c)

a×b×c= a×(b÷c)

a÷b÷c=a÷(b×c)

究竟哪个是对的呢?请小组合作验证。

小组合作验证;可以采用代入数字的方法,也可以采用举实例的方法等等。

小组选择自己认为可能的规律进行验证。

最后验证出第三个是正确的。

小练:

(1)填空:

436-236-150=436-(□+□)

480-(268+132)=480〇268〇132

1000-159-□=1000〇(□+441)

□-(217+443)=895-□-□

16÷2÷4=16÷(□〇□)

210÷(7×6)=210〇(7〇6)

□÷(25×7)=350〇(□〇□)

(2)判断:

638-(438+57=638-438+57

901-109-91= 901-(109+91)

113-36-64= 133-(36+64)

3456-(481+519)= 3456-481-519

35÷14 = 350÷2÷7

3000÷4÷25= 3000÷(4+25)

三、巩固练习:

P39/做一做1、2

简算:(1)1245-(245+673)

(2)1275-(164+36)

(3)480-82-18

(4)673-84-71-45

(5)81÷3÷3

(6)210÷(7×6)

四、小结

学生谈收获,以及本节课的重点和做题中需要注意的问题。

五、作业:P41/2—4、P47/6

板书设计:

连加、连除算式中的简算

(1)1035-235-497 (1)1035-497-203 a+b+c= a+(b-c)

1035-497-235 1035-203-497 a×b×c= a×(b÷c)

(2)1035-(497+235) (2)1035-(497+203)

1035-235-497 =1035-(497+235) 1035-497-203 =1035-(497+203)

┆(学生举例)

从一个数里连续减去两个数, 从一个数里连续除以两个数,

可以减去两个数的和。 可以除以这两个数的积。

a-b-c=a-(b+c) a÷b÷c=a÷(b×c)

综合运用加碱计算的实践问题

教学目标:●培养学生灵活解决实际问题的能力。

教学过程:

一、图片引入

观察主题图,思考问题的解决方法。

出示主题图。

二、新授

1.观察图(一)中的条件问题。

引导学生观察图(一)

小组合作讨论问题(一)的解决方法,比一比哪个小组的方法多?

小组讨论。

(教材提示了两种算法。一种是把每三本书的价钱相加。采用这种方法,学生遇到的困难是,四本书取三本共有几种情况?这是一个组合问题,回答这个问题,如果直接从四本书中每次取三本,要做到不重不漏,思考难度较大。如果反过来思考,四本取三本,也就是从四本书中每次去掉一本,就很容易得出共有四种情况。这种反过来思考的间接思路,用于计算三本书总价,就是教材提示的第二种算法。)

全班交流。

教师根据学生的汇报整理板书。

2.观察图(二)的条件问题。

小组讨论。

汇报。

三、小结

学生谈本节课的收获。

教师完善板书。

四、作业:P42/5—7

两个数相乘的乘法中的简便计算

教学目标:●使学生理解和掌握把一个数乘两位数,改成连续乘两个一位数的简便算法。●培养学生分析、判断、推理的能力,增强使用简便算法的择优意识。

教学重点:●简便算法的算理。

教学难点:●把一个两位数改成两个合适的一位数相乘的方法。

教学过程:

一、复习准备

口算

12×30 18×20

24×40 15×40

15=( )×( )

24=( )×( )

30=( )×( )

36=( )×( )

二、新授

出示 例4主题图

什么是“一打”?

引导学生观察主题图。

“一打”表示12个。

观察主题图,独立解决题目中的问题。

找三个代表性的解题方法进行板演。

板演:

(1)25×12=300(元)

(2)25×12

=25×(3×4)

=(25×4)×3

=100×3

=300(元)

(3)12×25

=12×(100÷4)

=12×100÷4

=1200÷4

=300(元)

第1种直接计算。

第2种把其中的一个两位数的因数改成了两个一位数相乘的形式。

引导学生观察三个算式及解决方法。

你喜欢哪种方法?在以后的解题过程中,你能应用自己喜欢的方法解决问题吗?

第三种把其中的一个因数改成了两个数相除的形式,然后变成乘除混合运算,可以任意交换位置进行简便计算。

根据主题图,你还能提出什么问题?

教师选择性地板书。

小组合作分工完成黑板上的题目。

小组内交流。

全班交流。

教师要注意学生在简算过程中,是否正确地采用了简便计算的方法。

三、小结

学生谈收获,小结重点及应该注意的问题。

教师完善板书。

四、巩固练习

P47/4、5

板书设计:

乘法中的简便计算

12×25=300(元) 12×25 12×25

=(3×4)×25 =12×(100÷4)

=3×(4×25) =12×100÷4

=3×100 =1200÷4

=300(元) =300(元)

乘加运算中的简便计算

教学目标:●进一步熟练学生进行简便计算的方法。●能熟练运用简便方法解决实际中的问题。

教学过程:

一、主题图引入

观察主题图。

引导学生观察主题图。

二、新授

请你们根据图中的条件与问题,进行小组讨论,看看这个问题如何解决。

巡视指导。

汇报:

(1)31×2+30×2+26

=(31+30)×2+26

=61×2+26

=122+26

=148(天)

(2)7×21+1

=147+1

=148(天)

在按月计算的过程中,运用了乘法分配律。

按周计算的思路不难理解,但计数一共有多少周比较容易出错。可以让同桌互相指着月历边点、边数,也可以请能正确计数的同学介绍自己是怎样数的。

根据主题图的数据你们还能提出什么问题?

学生根据条件问题提问。

教师根据学生的提问板书。

学生选择自己感兴趣的问题进行独立解答。

解答后小组互相交流。说说自己完成的是哪个问题,怎样解决的?有没有用到运算定律,怎样运用的?

三、小结

学生谈收获及应该注意的问题。

谈谈在今天的学习后,你对运算定律的应用又有了什么样的认识和感受。

四、巩固练习

P46—47/1、3、7、8

五、作业:准备实践活动《营养午餐》

板书设计:

乘、加运算中的简便计算

(1)31×2+30×2+26 (2)7×21+1

=(31+30)×2+26 =147+1

=61×2+26 =148(天)

=122+26

=148(天)

第四单元 小数的意义和性质

小数的产生和意义

知识方面:●使学生了解小数的产生。●使学生理解小数的意义。●掌握小数的计算单位及单位间的进率。

能力方面:●培养学生的动手操作能力及观察力。●培养学生的抽象概括能力。

德育方面:●渗透事物之间普遍联系的观点、实践第一的观点。

教学重点:理解和抽象小数的意义。

教学难点:抽象小数的意义。

教具学具准备:投影片、直尺。

教学步骤

一、铺垫孕伏

填空(投影出示)

(1)0.1是(   )分之一。         0.7里有(   )个0.1。

(2)10个0.1是(   )。          10个0.01是(   )。

(3) 写成小数是(   )。        写成小数是(   )。

(4)1米=(    )分米=(   )厘米=(   )毫米。

二、探究新知

1.导入新课:

同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

2.教学小数的产生

(1)引导学生动手量课桌的宽度,发现了什么?

(2)请同学们口答下面的题:(用整数表示结果)

1000÷10=     100÷10=    10÷10=     1÷10=

(3)总结:在测量和计算时,往往得不到整数的结果,这时也常用小数表示。由于日常生活和生产的需要,从而产生了小数。

3.教学小数的意义

(1)填写

①投影出示:在图中填出分数和小数。

学生填完结果并订正

②启发学生:把1米平均分成10份,每份是多少分米?3份呢?

③引导学生口述:1分米是10分之1米,还可写成0.1米?

④总结:分母是10的分数可以写成几位小数?(板书:一位小数)

(2)出示米尺教具

这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组方式讨论,然后找同学回答。

(3)问:把1米平均分成1000份,每份长是多少?

学生在尺上找出1毫米,而后出示(投影)1厘米的放大图

引导学生从图中找出1毫米,并说明理由。启发学生明确:1毫米

提问:分母是1000的分数可以写成几位小数?(板书:三位小数)

(4)抽象、概括小数的意义

①把1米看成一个整体,如把一个整体平均分成10份、100份、1000份……这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几、百分之几、千分之几这样的分数表示。

这样的分数写成小数时,可以仿照整数的写法,写在整数个位的右面,用圆点隔开。

③什么叫小数?引导学生讨论。

④师生共同概括:

分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

⑤完成“做一做”。

(5)教学小数的计数单位。

①学习阅读教科书,学习小数的计算单位。

②出示0.457,每个数位上的数各表示几个几分之一?

三、巩固发展

1.填表格:

2.判断:

(1)0.40里面有4个0.01( )

(2)35克=0.35千克( )

3.把小数改写成分数

0.9     0.09     0.0359

四、全课小结:这节课你有哪些收获?

五、独立作业: